Handout

Assume that you have three independendent measurements X_{1}, X_{2}, X_{3}, with $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. It follows that $\operatorname{var}(\bar{X})=\sigma^{2} / 3$.

Assume that you have to subtract a baseline B from each measurement. What is $\operatorname{var}\left(X_{i}-B\right)$?
If B is just a constant, then $\operatorname{var}\left(X_{i}-B\right)=\operatorname{var}\left(X_{i}\right)=\sigma^{2}$.
If B is a measurement with $\operatorname{var}(B)=\sigma_{B}^{2}$, then $\operatorname{var}\left(X_{i}-B\right)=\operatorname{var}\left(X_{i}\right)+\operatorname{var}(B)=\sigma^{2}+\sigma_{B}^{2}$.

What is the variance of the average of those values, i.e. what is the variance of $\sum_{i}\left(X_{i}-B\right) / 3$.. ?
$\operatorname{var}\left(\sum_{i}\left(X_{i}-B\right) / 3\right)=\operatorname{var}\left(\frac{1}{3}\left(X_{1}+X_{2}+X_{3}-3 \times B\right)\right)=\operatorname{var}(\bar{X}-B)=\operatorname{var}(\bar{X})+\operatorname{var}(B)=\frac{\sigma^{2}}{3}+\sigma_{B}^{2}$.

If each experiment has its own baseline B_{i}, measured independently, with $\operatorname{var}\left(B_{i}\right)=\sigma_{B}^{2}$, then

$$
\operatorname{var}\left(\sum_{i}\left(X_{i}-B_{i}\right) / 3\right)=\operatorname{var}(\bar{X}-\bar{B})=\operatorname{var}(\bar{X})+\operatorname{var}(\bar{B})=\frac{\sigma^{2}}{3}+\frac{\sigma_{B}^{2}}{3}=\frac{\sigma^{2}+\sigma_{B}^{2}}{3}
$$

