Handout

The setup

An experiment is a well-defined process with an uncertain outcome (for example, toss three fair coins).
The sample space is the set of possible outcomes (e. g. $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$).
An event is a set of outcomes (a subset of the sample space) (e. g. , $A=\{$ exactly one head $\}=\{$ HTT,THT,TTH $\}$).
An event is said to have occurred if one of the outcome it contains occurs.

Basic rules of probability

$0 \leq \operatorname{Pr}(\mathrm{A}) \leq 1$, for any event A .
$\operatorname{Pr}(\mathcal{S})=1$, for the sample space \mathcal{S}.
If A and B are mutually exclusive, $\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.

More rules

$\operatorname{Pr}($ not $A)=1-\operatorname{Pr}(A)$
$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A$ and $B)$

Conditional probability

$\operatorname{Pr}(A \mid B)=$ "probability of A given $B "=\operatorname{Pr}(A$ and $B) / \operatorname{Pr}(B)$, provided $\operatorname{Pr}(B)>0$.

Independence

Events A and B are independent if $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$, or equivalently, if $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$ and $\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)$.

Still more rules

$\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{B}) \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$
$\operatorname{Pr}(\mathrm{A})=\operatorname{Pr}(\mathrm{A}$ and B$)+\operatorname{Pr}(\mathrm{A}$ and not B$)=\operatorname{Pr}(\mathrm{B}) \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})+\operatorname{Pr}($ not B$) \operatorname{Pr}(\mathrm{A} \mid$ not B$)$

Bayes rule

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) / \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) /\{\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})+\operatorname{Pr}($ not A$) \operatorname{Pr}(\mathrm{B} \mid \operatorname{not} \mathrm{A})\}$

An example

Suppose a test for HIV correctly gives a positive result, if a person is infected, with probability 99.5%, and correctly gives a negative result, if a person is not infected, with probability 98%.
(a) Suppose that 0.1% of a population are infected with HIV. Consider drawing a person at random and testing him or her for HIV infection. Calculate $\operatorname{Pr}($ infected \mid test is positive).

Let $I=\{$ the person is infected $\}$ and $P=\{$ the person tests positive $\}$.
From the information above, on the sensitivity and specificity of the test, we have $\operatorname{Pr}(\mathrm{P} \mid \mathrm{I})=0.995$ and $\operatorname{Pr}($ not $\mathrm{P} \mid$ not I$)=0.98$.
From this information,
$\operatorname{Pr}($ not $\mathrm{P} \mid \mathrm{I})=1-\operatorname{Pr}(\mathrm{P} \mid \mathrm{I})=0.005$ and $\operatorname{Pr}(\mathrm{P} \mid$ not I$)=1-\operatorname{Pr}($ not $\mathrm{P} \mid$ not I$)=0.02$.
Note further that $\operatorname{Pr}(\mathrm{I})=0.001$, and so $\operatorname{Pr}($ not I$)=0.999$.
We seek to calculate $\operatorname{Pr}(\mathrm{I} \mid \mathrm{P})$. We use Bayes's rule. \{Why use Bayes's rule here? Because we want to "turn around the conditioning." We want to write $\operatorname{Pr}(\mathrm{I} \mid \mathrm{P})$ in terms of things like $\operatorname{Pr}(\mathrm{P} \mid \mathrm{I})$.\}

$$
\begin{aligned}
\operatorname{Pr}(I \mid P) & =\operatorname{Pr}(I) \operatorname{Pr}(P \mid I) /[\operatorname{Pr}(I) \operatorname{Pr}(P \mid I)+\operatorname{Pr}(\text { not I }) \operatorname{Pr}(P \mid \text { not } I)] \\
& =0.001 \times 0.995 /(0.001 \times 0.995+0.999 \times 0.02) \approx 4.7 \%
\end{aligned}
$$

(b) Consider a person drawn from a high-risk group, so that they have, a priori, probability 30% of being infected. Calculate $\operatorname{Pr}($ infected \mid test is positive $)$.
In this case, we have $\operatorname{Pr}(\mathrm{I})=0.3$ and $\operatorname{Pr}($ not I$)=1-\operatorname{Pr}(\mathrm{I})=0.7$.
Thus, $\operatorname{Pr}(I \mid P)=0.3 \times 0.995 /(0.3 \times 0.995+0.7 \times 0.02) \approx 96 \%$

Mutually Exclusive vs Independent

1. Suppose that events A and B are mutually exclusive. Calculate, in terms of $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$,
(a) $\operatorname{Pr}(\mathrm{A}$ or B$):$
$\longrightarrow \quad \operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.
(b) $\operatorname{Pr}(\mathrm{A}$ and B$)$:
$\longrightarrow \quad \operatorname{Pr}(A$ and $B)=0$, since they can't both happen.
2. Suppose that A and B are independent. Calculate, in terms of $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$,
(a) $\operatorname{Pr}(\mathrm{A}$ and B$)$: $\longrightarrow \quad \operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$.
(b) $\operatorname{Pr}(\mathrm{A}$ or B$):$
$\longrightarrow \quad \operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B})$.
3. Suppose that A and B are both mutually exclusive and independent. What can we say about $\operatorname{Pr}(A$ or $B), \operatorname{Pr}(A$ and $B), \operatorname{Pr}(A)$, and $\operatorname{Pr}(B)$?
Since A and B are independent, $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$. But since A and B are mutually exclusive, $\operatorname{Pr}(A$ and $B)=0$. Thus $\operatorname{Pr}(A) \times \operatorname{Pr}(B)=0$. And so either $\operatorname{Pr}(A)=0$, or $\operatorname{Pr}(B)=0$, or both.

In other words, either A or B (or both) cannot happen!
The point: Generally when we talk about independent events, they are not mutually exclusive, and vice versa.

