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Logs

• Recall that logB(x) is the number y so that By = x

• Note that you can not take the log of a negative number;
logB(1) is always 0 and logB(0) is −∞

• When the base is B = e we write loge as just log or ln

• Other useful bases are 10 (orders of magnitude) or 2

• Recall that log(ab) = log(a) + log(b), log(ab) = b log(a),
log(a/b) = log(a)− log(b) (log turns multiplication into
addition, division into subtraction, powers into
multiplication)
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Some reasons for “logging” data

• To correct for right skewness

• When considering ratios

• In settings where errors are feasibly multiplicative, such as
when dealing with concentrations or rates

• To consider orders of magnitude (using log base 10); for
example when considering astronomical distances

• Counts are often logged (though note the problem with
zero counts)
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The geometric mean

• The (sample) geometric mean of a data set X1, . . . ,Xn is(
n∏

i=1

Xi

)1/n

• Note that (provided that the Xi are positive) the log of
the geometric mean is

1

n

n∑
i=1

log(Xi )

• As the log of the geometric mean is an average, the LLN
and clt apply (under what assumptions?)

• The geometric mean is always less than or equal to the
sample (arithmetic) mean
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The geometric mean

• The geometric mean is often used when the Xi are all
multiplicative

• Suppose that in a population of interest, the prevalence of
a disease rose 2% one year, then fell 1% the next, then
rose 2%, then rose 1%; since these factors act
multiplicatively it makes sense to consider the geometric
mean

(1.02× .99× 1.02× 1.01)1/4 = 1.01

for a 1% geometric mean increase in disease prevalence
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• Notice that multiplying the initial prevalence by 1.014 is
the same as multiplying by the original four numbers in
sequence

• Hence 1.01 is constant factor by which you would need to
multiply the initial prevalence each year to achieve the
same overall increase in prevalence over a four year period

• The arithmetic mean, in contrast, is the constant factor by
which your would need to add each year to achieve the
same total increase (1.02 + .99 + 1.02 + 1.01)

• In this case the product and hence the geometric mean
make more sense than the arithmetic mean



Lecture 14

Ingo Ruczinski

Table of
contents

Outline

Logs

The geometric
mean

GM and the
CLT

Comparisons

The
log-normal
distribution

Nifty fact

• The question corner (google) at the University of
Toronto’s web site (where I got much of this) has a fun
interpretation of the geometric mean

• If a and b are the lengths of the sides of a rectangle then
• The arithmetic mean (a + b)/2 is the length of the sides of

the square that has the same perimeter
• The geometric mean (ab)1/2 is the length of the sides of

the square that has the same area

• So if you’re interested in perimeters (adding) use the
arithmetic mean; if you’re interested in areas (multiplying)
use the geometric mean
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Asymptotics

• Note, by the LLN the log of the geometric mean converges
to µ = E [log(X )]

• Therefore the geometric mean converges to
exp{E [log(X )]} = eµ, which is not the population mean
on the natural scale; we call this the population geometric
mean (but no one else seems to)

• To reiterate

exp{E [log(x)]} 6= E [exp{log(X )}] = E [X ]

• Note if the distribution of log(X ) is symmetric then

.5 = P(logX ≤ µ) = P(X ≤ eµ)

• Therefore, for log-symmetric distributions the geometric
mean is estimating the median
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Using the CLT

• If you use the CLT to create a confidence interval for the
log measurements, your interval is estimating µ, the
expected value of the log measurements

• If you exponentiate the endpoints of the interval, you are
estimating eµ, the population geometric mean

• Recall, eµ is the population median when the distribution
of the logged data is symmetric

• This is especially useful for paired data when their ratio,
rather than their difference, is of interest
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Comparisons

• Consider when you have two independent groups, logging
the individual data points and creating a confidence
interval for the difference in the log means

• Prove to yourself that exponentiating the endpoints of this
interval is then an interval for the ratio of the population
geometric means, eµ1

eµ2
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The log-normal distribution

• A random variable is log-normally distributed if its log is
a normally distributed random variable

• “I am log-normal” means “take logs of me and then I’ll
then be normal”

• Note log-normal random variables are not logs of normal
random variables!!!!!! (You can’t even take the log of a
normal random variable)

• Formally, X is lognormal(µ, σ2) if log(X ) ∼ N(µ, σ2)

• If Y ∼ N(µ, σ2) then X = eY is log-normal
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The log-normal distribution

• The log-normal density is

1√
2π
× exp[−{log(x)− µ}2/(2σ2)]

x
for 0 ≤ x ≤ ∞

• Its mean is eµ+(σ2/2) and variance is e2µ+σ
2
(eσ

2 − 1)

• Its median is eµ
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The log-normal distribution

• Notice that if we assume that X1, . . . ,Xn are
log-normal(µ, σ2) then Y1 = logX1, . . . ,Yn = logXn are
normally distributed with mean µ and variance σ2

• Creating a Gosset’s t confidence interval on using the Yi is
a confidence interval for µ the log of the median of the Xi

• Exponentiate the endpoints of the interval to obtain a
confidence interval for eµ, the median on the original scale

• Assuming log-normality, exponentiating t confidence
intervals for the difference in two log means again
estimates ratios of geometric means
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Example: interpret these results

Gray matter volumes for 342 older subjects (over 60) and 287
younger subjects were compared.

• The mean log gray matter volumes was 6.35 log(cm3)
(older) and 6.40 log(cm3) (younger). Exponentiating
these numbers leads to 570.90 cm3 and 599.40 cm3

• The SDs were 0.11 log(cm3) and 0.11 log(cm3)

• CIs
• Younger: log scale - [6.38, 6.41], exponentiated -

[592.03, 606.86]
• Older: log scale - [6.34, 6.36], exponentiated -

[564.36, 577.50]

• Two sample mean comparison
• Log scale - [0.03, 0.07]
• Exponentiated - [1.03, 1.07]
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