\\ \title{
Lecture 14\\ \title{
Lecture 14 \\ Ingo Ruczinski \\ Department of Biostatistics \\ Johns Hopkins Bloomberg School of Public Health Johns Hopkins University
}

October 23, 2015

Table of contents

(1) Table of contents
(2) Outline
(3) Logs
4. The geometric mean
(5) GM and the CLT
(6) Comparisons
(7) The log-normal distribution

Outline

(1) Review about logs
(2) Introduce the geometric mean
(3) Interpretations of the geometric mean
(4) Confidence intervals for the geometric mean
(5) Log-normal distribution
(6) Log-normal based intervals

Logs

- Recall that $\log _{B}(x)$ is the number y so that $B^{y}=x$
- Note that you can not take the \log of a negative number; $\log _{B}(1)$ is always 0 and $\log _{B}(0)$ is $-\infty$
- When the base is $B=e$ we write $\log _{e}$ as just \log or \ln
- Other useful bases are 10 (orders of magnitude) or 2
- Recall that $\log (a b)=\log (a)+\log (b), \log \left(a^{b}\right)=b \log (a)$, $\log (a / b)=\log (a)-\log (b)$ (log turns multiplication into addition, division into subtraction, powers into multiplication)

Some reasons for "logging" data

- To correct for right skewness
- When considering ratios
- In settings where errors are feasibly multiplicative, such as when dealing with concentrations or rates
- To consider orders of magnitude (using log base 10); for example when considering astronomical distances
- Counts are often logged (though note the problem with zero counts)

The geometric mean

- The (sample) geometric mean of a data set X_{1}, \ldots, X_{n} is

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

- Note that (provided that the X_{i} are positive) the log of the geometric mean is

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i}\right)
$$

- As the log of the geometric mean is an average, the LLN and clt apply (under what assumptions?)
- The geometric mean is always less than or equal to the sample (arithmetic) mean

The geometric mean

- The geometric mean is often used when the X_{i} are all multiplicative
- Suppose that in a population of interest, the prevalence of a disease rose 2% one year, then fell 1% the next, then rose 2%, then rose 1%; since these factors act multiplicatively it makes sense to consider the geometric mean

$$
(1.02 \times .99 \times 1.02 \times 1.01)^{1 / 4}=1.01
$$

for a 1% geometric mean increase in disease prevalence

- Notice that multiplying the initial prevalence by 1.01^{4} is the same as multiplying by the original four numbers in sequence
- Hence 1.01 is constant factor by which you would need to multiply the initial prevalence each year to achieve the same overall increase in prevalence over a four year period
- The arithmetic mean, in contrast, is the constant factor by which your would need to add each year to achieve the same total increase $(1.02+.99+1.02+1.01)$
- In this case the product and hence the geometric mean make more sense than the arithmetic mean

Nifty fact

- The question corner (google) at the University of Toronto's web site (where I got much of this) has a fun interpretation of the geometric mean
- If a and b are the lengths of the sides of a rectangle then
- The arithmetic mean $(a+b) / 2$ is the length of the sides of the square that has the same perimeter
- The geometric mean $(a b)^{1 / 2}$ is the length of the sides of the square that has the same area
- So if you're interested in perimeters (adding) use the arithmetic mean; if you're interested in areas (multiplying) use the geometric mean

Asymptotics

- Note, by the LLN the log of the geometric mean converges to $\mu=E[\log (X)]$
- Therefore the geometric mean converges to $\exp \{E[\log (X)]\}=e^{\mu}$, which is not the population mean on the natural scale; we call this the population geometric mean (but no one else seems to)
- To reiterate

$$
\exp \{E[\log (x)]\} \neq E[\exp \{\log (X)\}]=E[X]
$$

- Note if the distribution of $\log (X)$ is symmetric then

$$
.5=P(\log X \leq \mu)=P\left(X \leq e^{\mu}\right)
$$

- Therefore, for log-symmetric distributions the geometric mean is estimating the median

Using the CLT

- If you use the CLT to create a confidence interval for the log measurements, your interval is estimating μ, the expected value of the log measurements
- If you exponentiate the endpoints of the interval, you are estimating e^{μ}, the population geometric mean
- Recall, e^{μ} is the population median when the distribution of the logged data is symmetric
- This is especially useful for paired data when their ratio, rather than their difference, is of interest

Comparisons

- Consider when you have two independent groups, logging the individual data points and creating a confidence interval for the difference in the log means
- Prove to yourself that exponentiating the endpoints of this interval is then an interval for the ratio of the population geometric means, $\frac{e^{\mu_{1}}}{e^{\mu_{2}}}$

The log-normal distribution

- A random variable is log-normally distributed if its log is a normally distributed random variable
- "I am log-normal" means "take logs of me and then I'll then be normal"
- Note log-normal random variables are not logs of normal random variables!!!!!! (You can't even take the log of a normal random variable)
- Formally, X is lognormal $\left(\mu, \sigma^{2}\right)$ if $\log (X) \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- If $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $X=e^{Y}$ is log-normal

The log-normal distribution

- The log-normal density is

$$
\frac{1}{\sqrt{2 \pi}} \times \frac{\exp \left[-\{\log (x)-\mu\}^{2} /\left(2 \sigma^{2}\right)\right]}{x} \text { for } 0 \leq x \leq \infty
$$

- Its mean is $e^{\mu+\left(\sigma^{2} / 2\right)}$ and variance is $e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$
- Its median is e^{μ}

The log-normal distribution

- Notice that if we assume that X_{1}, \ldots, X_{n} are \log-normal $\left(\mu, \sigma^{2}\right)$ then $Y_{1}=\log X_{1}, \ldots, Y_{n}=\log X_{n}$ are normally distributed with mean μ and variance σ^{2}
- Creating a Gosset's t confidence interval on using the Y_{i} is a confidence interval for μ the log of the median of the X_{i}
- Exponentiate the endpoints of the interval to obtain a confidence interval for e^{μ}, the median on the original scale
- Assuming log-normality, exponentiating t confidence intervals for the difference in two log means again estimates ratios of geometric means

Example: interpret these results

Gray matter volumes for 342 older subjects (over 60) and 287 younger subjects were compared.

- The mean log gray matter volumes was $6.35 \log \left(\mathrm{~cm}^{3}\right)$ (older) and $6.40 \log \left(\mathrm{~cm}^{3}\right)$ (younger). Exponentiating these numbers leads to $570.90 \mathrm{~cm}^{3}$ and $599.40 \mathrm{~cm}^{3}$
- The SDs were $0.11 \log \left(\mathrm{~cm}^{3}\right)$ and $0.11 \log \left(\mathrm{~cm}^{3}\right)$
- Cls
- Younger: log scale - [6.38, 6.41], exponentiated [592.03, 606.86]
- Older: log scale - [6.34, 6.36], exponentiated [564.36, 577.50]
- Two sample mean comparison
- Log scale - [0.03, 0.07]
- Exponentiated - [1.03, 1.07]

