Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

Lecture 16

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 23, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

1 Table of contents

2 Outline

3 Power

4 Calculating power

5 T-tests

6 Monte Carlo

Table of contents

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Outline

Lecture 16

Ingo Ruczinsk

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

1 Power

- 2 Power for a one sided normal test
- 3 Power for t-test

Power

Lecture 16

Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

- Power is the probability of rejecting the null hypothesis when it is false
- Ergo, power (as it's name would suggest) is a good thing; you want more power
- A type II error (a bad thing, as its name would suggest) is failing to reject the null hypothesis when it's false; the probability of a type II error is usally called β
- Note Power $= 1 \beta$

Notes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lecture 16

Ingo Ruczinski

- Table of contents
- Outline

Power

- Calculating power
- T-tests
- Monte Carlo

- Consider our previous example involving RDI
- $H_0: \mu = 30$ versus $H_a: \mu > 30$

ł

• Then power is

$$P\left(rac{ar{X}-30}{s/\sqrt{n}} > t_{1-lpha,n-1} \mid \mu = \mu_a
ight)$$

- Note that this is a function that depends on the specific value of $\mu_a!$
- Notice as μ_a approaches 30 the power approaches α

Ingo Ruczinsk

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

Calculating power

Assume that *n* is large and that we know σ

$$1-\beta = P\left(rac{ar{X}-30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_{a}
ight)$$

$$= P\left(\frac{\bar{X} - \mu_{a} + \mu_{a} - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_{a}\right)$$

$$= P\left(\frac{\bar{X}-\mu_{a}}{\sigma/\sqrt{n}} > z_{1-\alpha} - \frac{\mu_{a}-30}{\sigma/\sqrt{n}} \mid \mu = \mu_{a}\right)$$

$$= P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

Example continued

• Suppose that we wanted to detect a increase in mean RDI of at least 2 events / hour (above 30). Assume normality and that the sample in question will have a standard deviation of 4; what would be the power if we took a sample size of 16?

•
$$Z_{lpha} = 1.645$$
 and $rac{\mu_a - 30}{\sigma/\sqrt{n}} = 2/(4/\sqrt{16}) = 2$

• P(Z > 1.645 - 2) = P(Z > -0.355) = 64%

Example continued

Table of contents

Lecture 16

Outline

Power

Calculating power

T-tests

Monte Carlo

• What n would be required to get a power of 80%

• I.e. we want

$$0.80 = P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)$$

• Set
$$z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} = z_{0.20}$$
 and solve for n

Notes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of contents

Lecture 16

- Outline
- Power
- Calculating power
- T-tests
- Monte Carlo

- The calculation for $H_a: \mu < \mu_0$ is similar
- For H_a : μ ≠ μ₀ calculate the one sided power using α/2 (this is only approximately right, it excludes the probability of getting a large TS in the opposite direction of the truth)
- Power goes up as α gets larger
- Power of a one sided test is greater than the power of the associated two sided test
- Power goes up as μ_1 gets further away from μ_0
- Power goes up as *n* goes up

Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

Power for the T test

- Consider calculating power for a Gossett's *T* test for our example
- The power is

$$P\left(\frac{\bar{X}-30}{S/\sqrt{n}} > t_{1-\alpha,n-1} \mid \mu = \mu_{a}\right)$$

• Notice that this is equal to

$$= P\left(\sqrt{n}(\bar{X} - 30) + > t_{1-\alpha,n-1}S \mid \mu = \mu_a\right)$$
$$= P\left(\frac{\sqrt{n}(\bar{X} - 30)}{\sigma} + > t_{1-\alpha,n-1}\frac{S}{\sigma} \mid \mu = \mu_a\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Continued

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continued

$$P\left(\frac{\sqrt{n}(\bar{X}-\mu_a)}{\sigma}+\frac{\sqrt{n}(\mu_a-30)}{\sigma}>\frac{t_{1-\alpha,n-1}}{\sqrt{n-1}}\times\sqrt{\frac{(n-1)S^2}{\sigma^2}}\right)$$

(where we ommitted the conditional on μ_a part for space) • This is now equal to

$$P\left(Z + \frac{\sqrt{n}(\mu_a - 30)}{\sigma} > \frac{t_{1-\alpha, n-1}}{\sqrt{n-1}}\sqrt{\chi_{n-1}^2}\right)$$

where Z and χ^2_{n-1} are independent standard normal and chi-squared random variables

• While computing this probability is outside the scope of the class, it would be easy to approximate with Monte Carlo

Lecture 16

Ingo Ruczinski

Table of contents

Outline

Power

Calculating power

T-tests

Monte Carlo

Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Table of contents

Lecture 16

Outline

Power

Calculating power

T-tests

Monte Carlo

```
Let's recalculate power for the previous example using the T distribution instead of the normal; here's the easy way to do it. Let \sigma = 4 and \mu_a - \mu_0 = 2
```

Example

able of

Lecture 16

```
Using Monte Carlo
          nosim <- 100000
          n <- 16
          sigma <- 4
Monte Carlo
          mu0 <- 30
          mua <- 32
          z < - rnorm(nosim)
          xsq <- rchisq(nosim, df = 15)
          t <- qt(.95, 15)
          mean(z + sqrt(n) * (mua - mu0) / sigma >
               t / sqrt(n - 1) * sqrt(xsq))
          ##result is 60%
```

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Comments

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lecture 16

- Power
- Calculating power
- T-tests
- Monte Carlo

- Notice that in both cases, power required a true mean and a true standard deviation
- However in this (and most linear models) the power depends only on the mean (or change in means) divided by the standard deviation