Lecture 18

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 31, 2015

Table of contents

(1) Table of contents
(2) Outline
(3) The score statistic
(4) Exact tests
(5) Comparing two binomial proportions
(6) Bayesian and likelihood analysis of two proportions

Outline

Table of

contents

Outline

(1) Tests for a binomial proportion
(2) Score test versus Wald
(3) Exact binomial test
(4) Tests for differences in binomial proportions
(5) Intervals for differences in binomial proportions

Motivation

Table of

 contents
Outline

- Consider a randomized trial where 40 subjects were randomized (20 each) to two drugs with the same active ingredient but different expedients
- Consider counting the number of subjects with side effects for each drug

	Side Effects	None	total
Drug A	11	9	20
Drug B	5	15	20
Total	16	14	40

Hypothesis tests for binomial proportions

- Consider testing $H_{0}: p=p_{0}$ for a binomial proportion
- The score test statistic

$$
\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}
$$

follows a Z distribution for large n

- This test performs better than the Wald test

$$
\frac{\hat{p}-p_{0}}{\sqrt{\hat{p}(1-\hat{p}) / n}}
$$

Inverting the two intervals

- Inverting the Wald test yields the Wald interval

$$
\hat{p} \pm Z_{1-\alpha / 2} \sqrt{\hat{p}(1-\hat{p}) / n}
$$

- Inverting the Score test yields the Score interval

$$
\begin{gathered}
\hat{p}\left(\frac{n}{n+Z_{1-\alpha / 2}^{2}}\right)+\frac{1}{2}\left(\frac{Z_{1-\alpha / 2}^{2}}{n+Z_{1-\alpha / 2}^{2}}\right) \\
\pm Z_{1-\alpha / 2} \sqrt{\frac{1}{n+Z_{1-\alpha / 2}^{2}}\left[\hat{p}(1-\hat{p})\left(\frac{n}{n+Z_{1-\alpha / 2}^{2}}\right)+\frac{1}{4}\left(\frac{Z_{1-\alpha / 2}^{2}}{n+Z_{1-\alpha / 2}^{2}}\right)\right]}
\end{gathered}
$$

- Plugging in $Z_{\alpha / 2}=2$ yields the Agresti/Coull interval

Example

Table of

contents

Outline

- In our previous example consider testing whether or not Drug A's percentage of subjects with side effects is greater than 10\%
- $H_{0}: p_{A}=.1$ verus $H_{A}: p_{A}>.1$
- $\hat{p}=11 / 20=.55$
- Test Statistic

$$
\frac{.55-.1}{\sqrt{.1 \times .9 / 20}}=6.7
$$

- Reject, pvalue $=P(Z>6.7) \approx 0$

Exact binomial tests

Table of

contents

Outline

The score statistic

Exact tests
Comparing

- Consider calculating an exact P-value
- What's the probability, under the null hypothesis, of getting evidence as extreme or more extreme than we obtained?

$$
P\left(X_{A} \geq 11\right)=\sum_{x=11}^{20}\binom{20}{x} \cdot 1^{x} \times \cdot 9^{20-x} \approx 0
$$

- pbinom(10, 20, .1, lower.tail = FALSE)
- binom.test(11, 20, .1, alternative = "greater")

Notes on exact binomial tests

- This test, unlike the asymptotic ones, guarantees the Type I error rate is less than desired level; sometimes it is much less
- Inverting the exact binomial test yields an exact binomial interval for the true proprotion
- This interval (the Clopper/Pearson interval) has coverage greater than 95%, though can be very conservative
- For two sided tests, calculate the two one sided P -values and double the smaller

Wald versus Agrest/Coull ${ }^{1}$

Table of contents

Outline

The score statistic

Coverage Probability

$n=5$

Coverage Probability

$\mathrm{n}=10$

Coverage Probability

Coverage Probability

$\mathrm{n}=20$
${ }^{1}$ Taken from Agresti and Caffo (2000) TAS

Comparing two binomials

- Consider now testing whether the proportion of side effects is the same in the two groups
- Let $X \sim \operatorname{Binomial}\left(n_{1}, p_{1}\right)$ and $\hat{p}_{1}=X / n_{1}$
- Let $Y \sim \operatorname{Binomial}\left(n_{2}, p_{2}\right)$ and $\hat{p}_{2}=Y / n_{2}$
- We also use the following notation:

$n_{11}=X$	$n_{12}=n_{1}-X$	$n_{1}=n_{1+}$
$n_{21}=Y$	$n_{22}=n_{2}-Y$	$n_{2}=n_{2+}$
n_{2+}	n_{+2}	

Comparing two proportions

- Consider testing $H_{0}: p_{1}=p_{2}$
- Versus $H_{1}: p_{1} \neq p_{2}, H_{2}: p_{1}>p_{2}, H_{3}: p_{1}<p_{2}$
- The score test statstic for this null hypothesis is

$$
T S=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where $\hat{p}=\frac{X+Y}{n_{1}+n_{2}}$ is the estimate of the common proportion under the null hypothesis

- This statistic is normally distributed for large n_{1} and n_{2}.

Continued

Table of

contents

Outline

- This interval does not have a closed form inverse for creating a confidence interval (though the numerical interval obtained performs well)
- An alternate interval inverts the Wald test

$$
T S=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}
$$

- The resulting confidence interval is

$$
\hat{p}_{1}-\hat{p}_{2} \pm Z_{1-\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

Continued

- As in the one sample case, the Wald iterval and test performs poorly relative to the score interval and test
- For testing, always use the score test
- For intervals, inverting the score test is hard and not offered in standard software
- A simple fix is the Agresti/Caffo interval which is obtained by calculating $\tilde{p}_{1}=\frac{x+1}{n_{1}+2}, \tilde{n}_{1}=n_{1}+2, \tilde{p}_{2}=\frac{y+1}{n_{2}+2}$ and $\tilde{n}_{2}=\left(n_{2}+2\right)$
- Using these, simply construct the Wald interval
- This interval does not approximate the score interval, but does perform better than the Wald interval

Example

Table of

contents

Outline

- Test whether or not the proportion of side effects is the same for the two drugs
- $\hat{p}_{A}=.55, \hat{p}_{B}=5 / 20=.25, \hat{p}=16 / 40=.4$
- Test statistic

$$
\frac{.55-.25}{\sqrt{.4 \times .6 \times(1 / 20+1 / 20)}}=1.61
$$

- Fail to reject H_{0} at .05 level (compare with 1.96)
- P-value $P(|Z| \geq 1.61)=.11$

Ingo Ruczinski

Table of

 contentsOutline
The score statistic

Exact tests
Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Caffo ${ }^{2}$

Figure 7. Coverage probabilities for 95% nominal Wald confidence interval as a function of p1 and $p 2$, when $n 1=n 2=10$.

Figure 8. Coverage probabilities for 95% nominal adjusted confidence interval (adding $t=4$ pseudo observations) as a function of p1 and p 2 , when $n 1=n 2=10$.
${ }^{2}$ Taken from Agresti and Caffo (2000) TAS

Wald versus Agrest/Caffo ${ }^{3}$

Table of contents

Outline
The score

statistic

Exact tests
Comparing two binomial proportions

Figure 6. Coverage probabilities for nominal 95% Wald and adjusted confidence intervals (adding $t=4$ pseudo observations) as a function of $\rho 1$ when $p 1-p 2=0$ or .2 and when $\rho 1 / p 2=2$ or 4 , for $n 1=n 2=10$.
${ }^{3}$ Taken from Agresti and Caffo (2000) TAS

Bayesian and likelihood inference for two binomial proportions

- Likelihood analysis requires the use of profile likelihoods, or some other technique and so we omit their discussion
- Consider putting independent $\operatorname{Beta}\left(\alpha_{1}, \beta_{1}\right)$ and $\operatorname{Beta}\left(\alpha_{2}, \beta_{2}\right)$ priors on p_{1} and p_{2} respectively
- Then the posterior is

$$
\pi\left(p_{1}, p_{2}\right) \propto p_{1}^{x+\alpha_{1}-1}\left(1-p_{1}\right)^{n_{1}+\beta_{1}-1} \times p_{2}^{y+\alpha_{2}-1}\left(1-p_{2}\right)^{n_{2}+\beta_{2}-1}
$$

- Hence under this (potentially naive) prior, the posterior for p_{1} and p_{2} are independent betas
- The easiest way to explore this posterior is via Monte Carlo simulation

```
x <- 11; n1 <- 20; alpha1 <- 1; beta1 <- 1
y <- 5; n2 <- 20; alpha2 <- 1; beta2 <- 1
p1 <- rbeta(1000, x + alpha1, n - x + beta1)
p2 <- rbeta(1000, y + alpha2, n - y + beta2)
rd <- p2 - p1
plot(density(rd))
quantile(rd, c(.025, .975))
mean(rd)
median(rd)
```

- The function twoBinomPost on the course web site automates a lot of this
- The output is

Post mn rd (mcse)	$=-0.278(0.004)$
Post mn rr (mcse)	$=0.512(0.007)$
Post mn or (mcse)	$=0.352(0.008)$
Post med rd	$=-0.283$
Post med rr	$=0.485$
Post med or	$=0.288$
Post mod rd	$=-0.287$
Post mod rr	$=0.433$
Post mor or	$=0.241$
Equi-tail rd	$=-0.531-0.008$
Equi-tail rr	$=0.1950 .98$
Equi-tail or	$=0.0740 .966$

Outline

The score statistic

Exact tests
Comparing
two binomial proportions

Bayesian and likelihood
analysis of two proportions

