Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Lecture 18

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 31, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

1 Table of contents

2 Outline

3 The score statistic

4 Exact tests

5 Comparing two binomial proportions

6 Bayesian and likelihood analysis of two proportions

Table of contents

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture 18

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

- 1 Tests for a binomial proportion
- 2 Score test versus Wald
- 3 Exact binomial test
- **4** Tests for differences in binomial proportions
- **5** Intervals for differences in binomial proportions

Motivation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

contents

Lecture 18

Outline

- The score statistic
- Exact tests
- Comparing two binomial proportions
- Bayesian and likelihood analysis of two proportions

- Consider a randomized trial where 40 subjects were randomized (20 each) to two drugs with the same active ingredient but different expedients
- Consider counting the number of subjects with side effects for each drug

	Side		
	Effects	None	total
Drug A	11	9	20
Drug B	5	15	20
Total	16	14	40

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Hypothesis tests for binomial proportions

- Consider testing $H_0: p = p_0$ for a binomial proportion
- The score test statistic

$$rac{\hat{
ho}-
ho_0}{\sqrt{
ho_0(1-
ho_0)/n}}$$

follows a Z distribution for large n

• This test performs better than the Wald test

$$\frac{\hat{p}-p_0}{\sqrt{\hat{p}(1-\hat{p})/n}}$$

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Inverting the two intervals

• Inverting the Wald test yields the Wald interval

$$\hat{p} \pm Z_{1-lpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

• Inverting the Score test yields the Score interval

$$\hat{\rho}\left(\frac{n}{n+Z_{1-\alpha/2}^2}\right) + \frac{1}{2}\left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2}\right)$$

$$\pm Z_{1-\alpha/2} \sqrt{\frac{1}{n+Z_{1-\alpha/2}^{2}} \left[\hat{p}(1-\hat{p}) \left(\frac{n}{n+Z_{1-\alpha/2}^{2}} \right) + \frac{1}{4} \left(\frac{Z_{1-\alpha/2}^{2}}{n+Z_{1-\alpha/2}^{2}} \right) \right]}$$

• Plugging in $Z_{\alpha/2} = 2$ yields the Agresti/Coull interval

Example

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- In our previous example consider testing whether or not Drug A's percentage of subjects with side effects is greater than 10%
- $H_0: p_A = .1$ verus $H_A: p_A > .1$

•
$$\hat{p} = 11/20 = .55$$

Test Statistic

Lecture 18

The score

statistic

$$\frac{.55 - .1}{\sqrt{.1 \times .9/20}} = 6.7$$

• Reject, pvalue = $P(Z > 6.7) \approx 0$

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Exact binomial tests

- Consider calculating an exact P-value
- What's the probability, under the null hypothesis, of getting evidence as extreme or more extreme than we obtained?

$$P(X_A \ge 11) = \sum_{x=11}^{20} \begin{pmatrix} 20 \\ x \end{pmatrix} .1^x \times .9^{20-x} \approx 0$$

- pbinom(10, 20, .1, lower.tail = FALSE)
- binom.test(11, 20, .1, alternative =
 "greater")

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Notes on exact binomial tests

- This test, unlike the asymptotic ones, guarantees the Type I error rate is less than desired level; sometimes it is much less
- Inverting the exact binomial test yields an exact binomial interval for the true proprotion
- This interval (the Clopper/Pearson interval) has coverage greater than 95%, though can be very conservative
- For two sided tests, calculate the two one sided P-values and double the smaller

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Coull¹

¹Taken from Agresti and Caffo (2000) TAS

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Comparing two binomials

- Consider now testing whether the proportion of side effects is the same in the two groups
- Let $X \sim \operatorname{Binomial}(n_1, p_1)$ and $\hat{p}_1 = X/n_1$
- Let $Y \sim \operatorname{Binomial}(n_2, p_2)$ and $\hat{p}_2 = Y/n_2$
- We also use the following notation:

$n_{11}=X$	$n_{12}=n_1-X$	$n_1 = n_{1+}$
$n_{21} = Y$	$n_{22}=n_2-Y$	$n_2 = n_{2+}$
<i>n</i> ₂₊	<i>n</i> ₊₂	

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Comparing two proportions

- Consider testing $H_0: p_1 = p_2$
- Versus $H_1: p_1 \neq p_2, \ H_2: p_1 > p_2, \ H_3: p_1 < p_2$
- The score test statstic for this null hypothesis is

$$TS = rac{\hat{
ho}_1 - \hat{
ho}_2}{\sqrt{\hat{
ho}(1-\hat{
ho})(rac{1}{n_1}+rac{1}{n_2})}}$$

where $\hat{p} = \frac{X+Y}{n_1+n_2}$ is the estimate of the common proportion under the null hypothesis

• This statistic is normally distributed for large n_1 and n_2 .

Continued

- This interval does not have a closed form inverse for creating a confidence interval (though the numerical interval obtained performs well)
- An alternate interval inverts the Wald test

$$TS = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$$

The resulting confidence interval is

$$\hat{
ho}_1 - \hat{
ho}_2 \pm Z_{1-lpha/2} \sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{n_1} + rac{\hat{
ho}_2(1-\hat{
ho}_2)}{n_2}}$$

Lecture 18

Ingo Ruczinski

- Table of contents
- Outline
- The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Continued

- Lecture 18
- Ingo Ruczinski
- Table of contents
- Outline
- The score statistic
- Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

- As in the one sample case, the Wald iterval and test performs poorly relative to the score interval and test
- For testing, always use the score test
- For intervals, inverting the score test is hard and not offered in standard software
- A simple fix is the Agresti/Caffo interval which is obtained by calculating $\tilde{p}_1 = \frac{x+1}{n_1+2}$, $\tilde{n}_1 = n_1 + 2$, $\tilde{p}_2 = \frac{y+1}{n_2+2}$ and $\tilde{n}_2 = (n_2 + 2)$
- Using these, simply construct the Wald interval
- This interval does not approximate the score interval, but does perform better than the Wald interval

Example

- Test whether or not the proportion of side effects is the same for the two drugs
- $\hat{p}_A = .55$, $\hat{p}_B = 5/20 = .25$, $\hat{p} = 16/40 = .4$
- Test statistic

Lecture 18

Comparing

two binomial proportions

$$\frac{.55 - .25}{\sqrt{.4 \times .6 \times (1/20 + 1/20)}} = 1.61$$

- Fail to reject H_0 at .05 level (compare with 1.96)
- P-value P(|Z| > 1.61) = .11

_

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Caffo²

Figure 7. Coverage probabilities for 95% nominal Wald confidence interval as a function of p1 and p2, when n1 = n2 = 10.

Figure 8. Coverage probabilities for 95% nominal adjusted confidence Interval (adding t = 4 pseudo observations) as a function of p1 and p2, when n1 = n2 = 10.

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Caffo³

Figure 6. Coverage probabilities for nominal 85% Wald and adjusted confidence intervals (adding t = 4 pseudo observations) as a function of p1 when p1 - p2 = 0 or .2 and when p1/p2 = 2 or 4, for n1 = n2 = 10.

³Taken from Agresti and Caffo (2000) TAS

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Bayesian and likelihood inference for two binomial proportions

- Likelihood analysis requires the use of profile likelihoods, or some other technique and so we omit their discussion
- Consider putting independent Beta(α₁, β₁) and Beta(α₂, β₂) priors on p₁ and p₂ respectively
- Then the posterior is

$$\pi(p_1,p_2) \propto p_1^{x+lpha_1-1} (1-p_1)^{n_1+eta_1-1} imes p_2^{y+lpha_2-1} (1-p_2)^{n_2+eta_2-1}$$

- Hence under this (potentially naive) prior, the posterior for *p*₁ and *p*₂ are independent betas
- The easiest way to explore this posterior is via Monte Carlo simulation

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

```
x <- 11; n1 <- 20; alpha1 <- 1; beta1 <- 1
y <- 5; n2 <- 20; alpha2 <- 1; beta2 <- 1
p1 <- rbeta(1000, x + alpha1, n - x + beta1)
p2 <- rbeta(1000, y + alpha2, n - y + beta2)
rd <- p2 - p1
plot(density(rd))
quantile(rd, c(.025, .975))
mean(rd)
median(rd)
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions • The function twoBinomPost on the course web site automates a lot of this

• The output is

Post	\mathtt{mn}	rd	(mcse)	=	-0.278	(0.004)
Post	mn	rr	(mcse)	=	0.512	(0.007)
Post	mn	or	(mcse)	=	0.352	(0.008)

Post	\mathtt{med}	rd	=	-0.283
Post	$\verb+med$	rr	=	0.485
Post	\mathtt{med}	or	=	0.288

Post	mod	rd	=	-0.287
Post	$\verb+mod$	rr	=	0.433
Post	mor	or	=	0 241

Equi-tail	rd	=	-0.531 -0.008
Equi-tail	rr	=	0.195 0.98
Equi-tail	or	=	0.074 0.966

Ingo Ruczinski

Table of contents

Outline

The score statistic

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Risk Difference