Lecture 19
 Ingo Ruczinski
 Department of Biostatistics
 Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 31, 2015

Table of contents

Table of
contents

Outline

Relative
measures
The relative

risk

The odds ratio
(1) Table of contents
(2) Outline
(3) Relative measures
(4) The relative risk
(5) The odds ratio
(1) Define relative risk
(2) Odds ratio
(3) Confidence intervals

Motivation

Table of

contents

Outline

Relative

 measures- Consider a randomized trial where 40 subjects were randomized (20 each) to two drugs with the same active ingredient but different expedients
- Consider counting the number of subjects with side effects for each drug

	Side Effects	None	total
Drug A	11	9	20
Drug B	5	15	20
Total	16	14	40

Comparing two binomials

Table of

contents

Outline

Relative measures

- Let $X \sim \operatorname{Binomial}\left(n_{1}, p_{1}\right)$ and $\hat{p}_{1}=X / n_{1}$
- Let $Y \sim \operatorname{Binomial}\left(n_{2}, p_{2}\right)$ and $\hat{p}_{2}=Y / n_{2}$
- We also use the following notation:

$n_{11}=X$	$n_{12}=n_{1}-X$	$n_{1}=n_{1+}$
$n_{21}=Y$	$n_{22}=n_{2}-Y$	$n_{2}=n_{2+}$
n_{2+}	n_{+2}	

- Last time, we considered the absolute change in the proportions, what about relative changes?
- Relative changes are often of more interest than absolute, eg when both proportions are small
- The relative risk is defined as p_{1} / p_{2}
- The natural estimator for the relative risk is

$$
\hat{R R}=\frac{\hat{p}_{1}}{\hat{p}_{2}}=\frac{X / n_{1}}{Y / n_{2}}
$$

- The standard error for $\log \hat{R R}$ is

$$
\hat{S E}_{\log \hat{R} R}=\left(\frac{\left(1-p_{1}\right)}{p_{1} n_{1}}+\frac{\left(1-p_{2}\right)}{p_{2} n_{2}}\right)^{1 / 2}
$$

- Exponentiate the resutling interval to get an interval for the RR
- The odds ratio is defined as

$$
\frac{\text { Odds of SE Drug A }}{\text { Odds of SE Drug B }}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}=\frac{p_{1}\left(1-p_{2}\right)}{p_{2}\left(1-p_{1}\right)}
$$

- The sample odds ratio simply plugs in the estimates for p_{1} and p_{2}, this works out to have a convenient form

$$
\hat{O R}=\frac{\hat{p}_{1} /\left(1-\hat{p}_{1}\right)}{\hat{p}_{2} /\left(1-\hat{p}_{2}\right)}=\frac{n_{11} n_{22}}{n_{12} n_{21}}
$$

(cross product ratio)

- The standard error for $\log \hat{O R}$ is

$$
\hat{S E}_{\log \hat{O} R}=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}
$$

- Exponentiate the resulting interval to obtain an interval for the OR

Some comments

- Notice that the sample and true odds ratios do not change if we transpose the rows and the columns
- For both the OR and the RR, taking the logs helps with adherence to the error rate
- Of course the interval for the $\log R R$ or $\log O R$ is obtained by taking

$$
\text { Estimate } \pm Z_{1-\alpha / 2} S E_{\text {Estimate }}
$$

- Exponentiating yields an interval for the OR or RR
- Though logging helps, these intervals still don't perform altogether that well

Example - RR

- For the relative risk, $\hat{p}_{A}=11 / 20=.55, \hat{p}_{B}=5 / 20=.25$
- $\hat{R R}_{A / B}=.55 / .25=2.2$
- $\hat{S E}_{\log \hat{R} R_{A / B}}=\sqrt{\frac{1-.55}{.55 \times 20}+\frac{1-.25}{.25 \times 20}}=.44$
- Interval for the \log RR:

$$
\log (2.2) \pm 1.96 \times .44=[-.07,1.65]
$$

- Interval for the RR: [.93, 5.21]

Example - OR

- $\hat{O R_{A / B}}=\frac{11 \times 15}{9 \times 5}=3.67$
- $\hat{S E_{\log } \hat{O} R_{A / B}}{ }=\sqrt{\frac{1}{11}+\frac{1}{9}+\frac{1}{5}+\frac{1}{15}}=.68$
- Interval for \log OR: $\log (3.67) \pm 1.96 \times .68=[-.04,2.64]$
- Interval for the OR: [.96, 14.01]

Example - RD

- For the risk difference

$$
\hat{R D}_{A-B}=\hat{p}_{A}-\hat{p}_{B}=.55-.25=.30
$$

- Interval: $.30 \pm 1.96 \times .15=[.15, .45]$

Ingo Ruczinski

Table of contents

Outline

Relative
measures

The relative

 riskThe odds ratio

Ingo Ruczinski

Table of

 contents
Outline

Relative measures

The relative

 riskThe odds ratio

