Outline

Fisher's exact

The hyperge metric distribution

test in practic

Monte Carlo

Lecture 21

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 5, 2015

Table of contents

Table of contents

1 Table of contents

2 Outline

3 Fisher's exact test

4 The hypergeometric distribution

5 Fisher's exact test in practice

6 Monte Carlo

Wiente Carro

Lecture 21

Ingo Ruczinski

Table of contents

Outline

Fisher's exa

The hyperge metric distribution

Fisher's exact test in practice

- 1 Introduce Fisher's exact test
- 2 Illustrate Monte Carlo version of test

Outline

Fisher's exact test

The hyperged metric distribution

Fisher's exact test in practice

Monte Carlo

Fisher's exact test

- Fisher's exact test is "exact" because it guarantees the α rate, regardless of the sample size
- Example, chemical toxicant and 10 mice

	Tumor	None	Total
Treated	4	1	5
Control	2	3	5
Total	6	4	

- p_1 = prob of a tumor for the treated mice
- p_2 = prob of a tumor for the untreated mice

Table of contents

Fisher's exact

test

The hyperge metric

Fisher's exact test in practice

- $H_0: p_1 = p_2 = p$
- Can't use Z or χ^2 because SS is small
- Don't have a specific value for p

Fisher's exact

The hyperge

distribution Fisher's exact

test in practice

Monto Carlo

- Under the null hypothesis every permutation is equally likely
- observed data

Treatment: T T T T T C C C C C
Tumor: T T T T N T T N N N

permuted

Treatment: T C C T C T T C T C T Umor: N T T N N T T T N T

• Fisher's exact test uses this null distribution to test the hypothesis that $p_1=p_2$

The hypergeometric distribution

X number of tumors for the treated

Y number of tumors for the controls

- $H_0: p_1 = p_2 = p$
- Under H_0
 - $X \sim \text{Binom}(n_1, p)$
 - $Y \sim \text{Binom}(n_2, p)$
 - $X + Y \sim \text{Binom}(n_1 + n_2, p)$

_. . .

test

The hypergeometric distribution

Fisher's exact test in practice

Monte Carlo

$$P(X = x \mid X + Y = z) = \frac{\binom{n_1}{x} \binom{n_2}{z - x}}{\binom{n_1 + n_2}{z}}$$

This is the hypergeometric pmf

Fisher's exact test in practice

$$P(X = x) = \binom{n_1}{x} p^x (1 - p)^{n_1 - x}$$

$$P(Y = z - x) = \binom{n_2}{z - x} p^{z - x} (1 - p)^{n_2 - z + x}$$

$$P(X + Y = z) = \binom{n_1 + n_2}{z} p^z (1 - p)^{n_1 + n_2 - z}$$

Outline

test

The hypergeometric distribution

Fisher's exact test in practice

Monte Carlo

$$P(X = x \mid X + Y = z) = \frac{P(X = x, X + Y = z)}{P(X + Y = z)}$$

$$= \frac{P(X = x, Y = z - x)}{P(X + Y = z)}$$

$$= \frac{P(X = x)P(Y = z - x)}{P(X + Y = z)}$$

Plug in and finish off yourselves

Table of contents

Field and a large

The hyperge

distribution
Fisher's exact

test in practice

- More tumors under the treated than the controls
- Calculate an exact P-value
- Use the conditional distribution = hypergeometric
- Fixes both the row and the column totals
- Yields the same test regardless of whether the rows or columns are fixed
- Hypergeometric distribution is the same as the permutation distribution given before

Outille

The hypergeo

Fisher's exact

test in practice

Monte Carlo

- Consider $H_a : p_1 > p_2$
- P-value requires tables as extreme or more extreme (under H_a) than the one observed
- Recall we are fixing the row and column totals
- Observed table

More extreme tables in favor of the alternative

Table 2 =
$$\begin{bmatrix} 5 & 0 & 5 \\ 1 & 4 & 5 \\ \hline 6 & 4 & \end{bmatrix}$$

Outline

Fisher's exact test

The hyperge metric distribution

Fisher's exact test in practice

Monte Carlo

P(Table 1) =
$$P(X = 4|X + Y = 6)$$

= $\begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$
= 0.238

$$P(\text{Table 2}) = P(X = 5|X + Y = 6)$$

$$= \frac{\binom{5}{5}\binom{5}{1}}{\binom{10}{6}} = 0.024$$

P-value = 0.238 + 0.024 = 0.262

```
Table of contents
```

Fisher's exac

The hyperged metric distribution

Fisher's exact test in practice

```
dat <- matrix(c(4, 1, 2, 3), 2)
fisher.test(dat, alternative = "greater")
------
Fisher's Exact Test for Count Data</pre>
```

Fisher's ex

The hyperged

Fisher's exact test in practice

- Two sided p-value = 2×one sided P-value (There are other methods which we will not discuss)
- P-values are usually large for small n
- Doesn't distinguish between rows or columns
- The common value of p under the null hypothesis is called a nuisance parameter
- Conditioning on the total number of successes, X + Y, eliminates the nuisance parameter, p
- Fisher's exact test guarantees the type I error rate
- Exact unconditional P-value

$$\sup_{p} P(X/n_1 > Y/n_2; p)$$

Monte Carlo

Monte Carlo

• Observed table X=4

Treatment: T T T T T C C C C C : TTTTNTTNNN Tumor

Permute the second row

Treatment: T T T T T C C C C C : TNTNTTNNTT Tumor

- Simulated table X = 3
- Do over and over
- Calculate the proportion of tables for which the simulated X > 4
- This proportion is a Monte Carlo estimate for Fisher's exact P-value