Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

lesting equality of several proportions Generalizatio

Monte Carlo

Goodness of fit testing

Lecture 22

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 5, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ingo Ruczinski

Table of contents

- Outline
- Chi-square testing
- Testing independence
- Testing equality of several proportions
- Generalization
- Monte Carlo
- Goodness o fit testing

1 Table of contents

- 2 Outline
- 3 Chi-squared testing
- 4 Testing independence
- **5** Testing equality of several proportions
- 6 Generalization
- Independence
- 8 Monte Carlo
- **9** Goodness of fit testing

Table of contents

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization Independence

Monte Carlo

Goodness of fit testing

- Chi-squared tests for equivalence of two binomial proportions
- 2 Chi-squared tests for independence, 2×2 tables
- 3 Chi-squared tests for multiple binomial proportions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 4 Chi-squared tests for independence, $r \times c$ tables
- 5 Chi-squared tests for goodness of fit

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Chi-squared testing

• An alternative approach to testing equality of proportions uses the chi-squared statistic

$$\sum \frac{(\mathsf{Observed} - \mathsf{Expected})^2}{\mathsf{Expected}}$$

- "Observed" are the observed counts
- "Expected" are the expected counts under the null hypothesis
- The sum is over all four cells
- This statistic follows a Chi-squared distribution with 1 df
- The Chi-squared statistic is exactly the square of the difference in proportions Score statistic

Example

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Total

TrtSide EffectsX44Y77

X	44	56	100
Y	77	43	120
	121	99	220

None

- p_1 and p_2 are the cure rates
- $H_0: p_1 = p_2$

Lecture 22

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

equality of several proportions Generalizatio

Monte Carlo

Goodness of fit testing

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions Generalizatio

Independence

Monte Carlo

Goodness o fit testing

- The χ^2 statistic is $\sum \frac{(O-E)^2}{E}$
- $O_{11} = 44$, $E_{11} = \frac{121}{220} \times 100 = 55$
- $O_{21} = 77$, $E_{21} = \frac{121}{220} \times 120 = 66$
- $O_{12} = 56$, $E_{12} = \frac{99}{220} \times 100 = 45$
- $O_{22} = 43, \ E_{22} = \frac{99}{220} \times 120 = 54$

$$\chi^2 = \frac{(44-55)^2}{55} + \frac{(77-66)^2}{666} + \frac{(56-45)^2}{45} + \frac{(43-54)^2}{54}$$

Which turns out to be 8.96. Compare to a χ^2 with one degree of freedom (reject for large values). pchisq(8.96, 1, lower.tail = FALSE) #result is 0.002

R code

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 22

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions Generalization Independence Monte Carlo Goodness of fit testing

```
dat <- matrix(c(44, 77, 56, 43), 2)
chisq.test(dat)
chisq.test(dat, correct = FALSE)</pre>
```

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions Generalizatio

•

Coodness of

fit testing

Notation reminder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$n_{11} = x$	$n_{12}=n_1-x$	$n_1 = n_{1+}$
$n_{21} = y$	$n_{22} = n_2 - y$	$n_2 = n_{2+}$
<i>n</i> ₊₁	<i>n</i> ₊₂	

Notes

- Reject if the statistic is too large
- Alternative is two sided
- Do not divide α by 2
- A small χ^2 statistic implies little difference between the observed values and those expected under H_0
- The χ^2 statistic and approach generalizes to other kinds of tests and larger contingency tables
- Alternative computational form for the χ^2 statistic

$$\chi^2 = \frac{n(n_{11}n_{22} - n_{12}n_{21})^2}{n_{+1}n_{+2}n_{1+}n_{2+}}$$

Lecture 22

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Notes

• Notice that the statistic:

$$\chi^2 = \frac{n(n_{11}n_{22} - n_{12}n_{21})^2}{n_{+1}n_{+2}n_{1+}n_{2+}}$$

does not change if you transpose the rows and the columns of the table

- Surprisingly, the χ^2 statistic can be used
 - the rows are fixed (binomial)
 - the colums are fixed (binomial)
 - the total sample size is fixed (multinomial)
 - none are fixed (Poisson)
- For a given set of data, any of these assumptions results in the same value for the statistic

Lecture 22

Ingo Ruczinski

Table of contents

Outline

Chi-squared testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions Generalizatio Independence

Monte Carlo

Goodness of fit testing

Testing independence

- Maternal age versus birthweight¹
- Cross-sectional sample, only the total sample size is fixed

	Birthweight				
Mat. Age	$ $ < 2500 g $ $ \geq 2,500 g $ $ Total				
< 20 <i>y</i>	20	80	100		
$\geq 20y$	30	270	300		
Total	50	350	400		

- H_0 : MA is independent of BW
- *H_a* : MA is not independent of BW

¹From Agresti Categorical Data Analysis second edition \rightarrow (\equiv) \equiv \neg \circ \circ

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions Generalizatio Independence

Goodness of fit testing

Continued

- Under H_0 (est) $P(MA < 20) = \frac{100}{400} = .25$
- Under H_0 (est) $P(BW < 2500) = \frac{50}{400} = .125$
- Under H₀ (est)

 $P(MA < 20 \text{ and } BW < 2,500) = .25 \times .125$

- Therefore
 - $E_{11} = \frac{100}{400} \times \frac{50}{400} \times 400 = 12.5$ • $E_{12} = \frac{100}{400} \times \frac{350}{400} \times 400 = 87.5$ • $E_{21} = \frac{360}{400} \times \frac{350}{400} \times 400 = 37.5$ • $E_{22} = \frac{300}{400} \times \frac{350}{400} \times 400 = 262.5$ • $\chi^2 = \frac{(20-12.5)^2}{12.5} + \frac{(80-87.5)^2}{87.5} \frac{(30-37.5)^2}{37.5} + \frac{(270-262.5)^2}{262.5} = 6.86$
- Compare to critical value qchisq(.95, 1)=3.84
- Or calculate P-value pchisq(6.86, 1, lower.tail = F)=.009

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions Generalization

Monte Carlo

Goodness of fit testing

2

Chi-squared testing cont'd

	Alcohol use			
Group	High	Low	Total	
Clergy	32	268	300	
Educators	51	199	250	
Executives	67	233	300	
Retailers	83	267	350	
Total	233	967	1,200	

²From Agresti's Categorical Data Analysis second edition $A \equiv A = O \otimes O \otimes O$

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization Independence Monte Carlo Goodness of • Interest lies in testing whether or not the proportion of high alcohol use is the same in the four occupations

•
$$H_0: p_1 = p_2 = p_3 = p_4 = p_4$$

- H_a : at least two of the p_j are unequal
- $O_{11} = 32, E_{11} = 300 \times \frac{233}{1200}$
- $O_{12} = 268, \ E_{12} = 300 \times \frac{967}{1200}$
- ...
- Chi-squared statistic $\sum \frac{(0-E)^2}{E} = 20.59$
- df = (Rows 1)(Columns 1) = 3
- Pvalue pchisq(20.59, 3, lower.tail = FALSE) ≈ 0

Generalization

3

Word distributions

	Book				
Word	1	2	3	Total	
а	147	186	101	434	
an	25	26	11	62	
this	32	39	15	86	
that	94	105	37	236	
with	59	74	28	161	
without	18	10	10	38	
Total	375	440	202	1017	

³From Rice Mathematical Statistics and Data Analysis, second edition

Ingo Ruczinski

- Table of contents
- Outline
- Chi-square testing
- Testing independence
- Testing equality of several proportions

Generalization

- Independence
- Monte Carlo
- Goodness of fit testing

• *H*₀ : The probabilities of each word are the same for every book

- H_a : At least two are different
- $O_{11} = 147 \ E_{11} = 375 \times \frac{434}{1017}$
- $O_{12} = 186 \ E_{12} = 440 \times \frac{434}{1017}$
- ...
- $\sum \frac{(O-E)^2}{E} = 12.27$
- df = (6-1)(3-1) = 10

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Testing independence

Wife's Rating						
Husband	Ν	F	V	А	Tot	
N	7	7	2	3	19	
F	2	8	3	7	20	
V	1	5	4	9	19	
А	2	8	9	14	33	
	12	28	18	33	91	

N=never, F=fairly often, V=very often, A=almost always $_{4}$

Independence cont'd

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of contents

Lecture 22

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

- H_0 : H and W ratings are independent
- *H_a* : not independent

•
$$P(H = N \& W = A) = P(H = N)P(W = A)$$

• stat =
$$\sum \frac{(O-E)^2}{E}$$

•
$$O_{11} = 7 \ E_{11} = 91 \times \frac{19}{91} \times \frac{12}{91} = 2.51$$

•
$$E_{ij} = n_{i+}n_{+j}/n$$

•
$$df = (Rows - 1)(Cols - 1)$$

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

•
$$\sum \frac{(O-E)^2}{E} = 16.96$$

•
$$df = (4-1)(4-1) = 9$$

 Cell counts might be too small to use large sample approximation

Independence cont'd

Notes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 22

Ingo Ruczinski

- Table of contents
- Outline
- Chi-square testing
- Testing independence
- Testing equality of several proportions
- Generalization
- Independence
- Monte Carlo
- Goodness of fit testing

- Equal distribution and independence test yield the same results
- Same test results if
 - row totals are fixed
 - column totals are fixed
 - total ss is fixed
 - none are fixed
- Note that this is common in statistics; mathematically equivalent results are applied in different settings, but result in different interpretations

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

- Chi-squared result requires large cell counts
- df is always (Rows 1)(Columns 1)
- Generalizations of Fishers exact test can be used or continuity corrections can be employed

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Exact permutation test

- Reconstruct the individual data
 - W:NNNNNNFFFFFFVVAAANNFFFFFFFF H:NNNNNNNNNNNNNNNFFFFFFFFFF
- Permute either the W or H row
- Recalculate the contingency table
- Calculate the χ^2 statistic for each permutation
- Percentage of times it is larger than the observed value is an exact P-value

```
chisq.test(x, simulate.p.value = TRUE)
```

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

Chi-squared goodness of fit

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Results from R's RNG

	[0, .25)	[.25, .5)	[.5, .75)	[.75, 1)	Total
Count	254	235	267	244	1000
TP	.25	.25	.25	.25	1

•
$$H_0$$
: $p_1 = .25$, $p_2 = .25$, $p_3 = .25$, $p_4 = .25$

• H_a : any $p_i \neq$ it's hypothesized value

Continued

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 22

Ingo Ruczinski

- Table of contents
- Outline
- Chi-square testing
- Testing independence
- Testing equality of several proportions
- Generalization
- Independence
- Monte Carlo
- Goodness of fit testing

- $O_1 = 254 \ E_1 = 1000 \times .25 = 250$
- $O_2 = 235 \ E_2 = 1000 \times .25 = 250$
- $O_3 = 267 \ E_3 = 1000 \times .25 = 250$
- $O_4 = 244 \ E_4 = 1000 \times .25 = 250$
- $\sum \frac{(O-E)^2}{E} = 2.264$
- *df* = 3
- *P* − *value* = .52

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions Generalizatio

Independence

Monte Carlo

Goodness of fit testing

Testing Mendel's hypothesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Phenotype				
	Yellow	Green	Total		
Observed	6022	2001	8023		
TP	.75	.25	1		
Expected	6017.25	2005.75	8023		

•
$$H_0: p_1 = .75, p_2 = .25$$

• $\sum \frac{(0-E)^2}{E} = \frac{(6022 - 6017.25)^2}{6017.25} + \frac{(2001 - 2005.75)^2}{2005.75} = .015$

Continued

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 22

Ingo Ruczinski

Table of contents

Outline

Chi-square testing

Testing independence

Testing equality of several proportions

Generalization

Independence

Monte Carlo

Goodness of fit testing

- df = 1
- P-value = .90
- Fisher combined several of Mendel's tables
- $\sum \chi^2_{v_i} \sim \chi^2_{\sum v_i}$
- Statistic 42, *df* = 84, P-value = .99996
- Agreement with theoretical counts is perhaps too good?

Notes on GOF

Table of contents

Lecture 22

- Outline
- Chi-square testing
- Testing independence
- Testing equality of several proportions
- Generalization
- Independence
- Monte Carlo
- Goodness of fit testing

- Test of whether or not observed counts equal theoretical values
- Test statistic is $\sum \frac{(0-E)^2}{E}$
- TS follows χ^2 distribution for large n
- df is the number of cells minus 1
- Undirected alternative is problematic
- Especially useful for testing RNGs
- Kolmogorov/Smirnov test is an alternative test that does not require discretization but often has low power