Lecture 23

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health
Johns Hopkins University
November 22, 2015

Table of contents

(1) Table of contents
(4) Berkeley data
(5) Confounding
(6) Weighting
(7) Mantel/Haenszel estimator
(1) Simpson's paradox
(2) Weighting
(3) CMH estimate
(4) CMH test

Simpson's (perceived) paradox

Table of contents

Simpson's paradox

Berkeley data
Confounding
Weighting
Mantel/Haensz estimator

		Death penalty		
Victim	Defendant	yes	no	yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
	White	53	430	11.0
	Black	15	176	7.9
White		64	451	12.4
Black		4	155	2.5

[^0]
Discussion

- Marginally, white defendants received the death penalty a greater percentage of time than black defendants
- Across white and black victims, black defendant's received the death penalty a greater percentage of time than white defendants
- Simpson's paradox refers to the fact that marginal and conditional associations can be opposing
- The death penalty was enacted more often for the murder of a white victim than a black victim. Whites tend to kill whites, hence the larger marginal association.

Example

Table of

contents

Outline

Simpson's paradox

Berkeley data
Confounding
Weighting
Mantel/Haensz estimator

- Wikipedia's entry on Simpson's paradox gives an example comparing two player's batting averages

	First Half		Second Half	Whole Season	
Player	4	$4 / 10$	$(.40)$	$25 / 100$	
Plater	2	$35 / 100$	$(.35)$	$2 / 10$	

- Player 1 has a better batting average than Player 2 in both the first and second half of the season, yet has a worse batting average overall
- Consider the number of at-bats

Berkeley admissions data

- The Berkeley admissions data is a well known data set regarding Simpsons paradox
?UCBAdmissions
data(UCBAdmissions)
apply(UCBAdmissions, c(1, 2), sum)
Gender
Admit Male Female

Admitted 1198	557	
Rejected 1493	1278	
	.445	.304 <- Acceptance rate

Acceptance rate by department
> apply(UCBAdmissions, 3,

$$
\begin{array}{r}
\text { function(x) } c(x[1] ~ / ~ \operatorname{sum}(x[1: 2]), \\
x[3] / \operatorname{sum}(x[3: 4])
\end{array}
$$

Berkeley data

Dept M F

A	0.62	0.82
B	0.63	0.68
C	0.37	0.34
D	0.33	0.35
E	0.28	0.24
F	0.06	0.07

Why? The application rates by department
> apply(UCBAdmissions, c(2, 3), sum)
Dept
$\begin{array}{lrrrrrr}\text { Gender } & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\ \text { Male } & 825 & 560 & 325 & 417 & 191 & 373 \\ \text { Female } & 108 & 25 & 593 & 375 & 393 & 341\end{array}$

Discussion

Table of

contents

Outline

- Mathematically, Simpson's pardox is not paradoxical

$$
\begin{aligned}
a / b & <c / d \\
e / f & <g / h \\
(a+e) /(b+f) & >(c+g) /(d+h)
\end{aligned}
$$

- More statistically, it says that the apparent relationship between two variables can change in the light or absence of a third

Confounding

- Variables that are correlated with both the explanatory and response variables can distort the estimated effect
- Victim's race was correlated with defendant's race and death penalty
- One strategy to adjust for confounding variables is to stratify by the confounder and then combine the strata-specific estimates
- Requires appropriately weighting the strata-specific estimates
- Unnecessary stratification reduces precision

Aside: weighting

- Suppose that you have two unbiased scales, one with variance 1 lb and and one with variance 9 lbs
- Confronted with weights from both scales, would you give both measurements equal creedance?
- Suppose that $X_{1} \sim N\left(\mu, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu, \sigma_{2}^{2}\right)$ where σ_{1} and σ_{2} are both known
- log-likelihood for μ

$$
-\left(x_{1}-\mu\right)^{2} / 2 \sigma_{1}^{2}-\left(x_{2}-\mu\right)^{2} / 2 \sigma_{2}^{2}
$$

Continued

Table of

contents

- Derivative wrt μ set equal to 0

$$
\left(x_{1}-\mu\right) / \sigma_{1}^{2}+\left(x_{2}-\mu\right) / \sigma_{2}^{2}=0
$$

- Answer

$$
\frac{x_{1} r_{1}+x_{2} r_{2}}{r_{1}+r_{2}}=x_{1} p+x_{2}(1-p)
$$

where $r_{i}=1 / \sigma_{i}^{2}$ and $p=r_{1} /\left(r_{1}+r_{2}\right)$

- Note, if X_{1} has very low variance, its term dominates the estimate of μ
- General principle: instead of averaging over several unbiased estimates, take an average weighted according to inverse variances
- For our example $\sigma_{1}^{2}=1, \sigma_{2}^{2}=9$ so $p=.9$

Mantel/Haenszel estimator

- Let $n_{i j k}$ be entry i, j of table k
- The $k^{\text {th }}$ sample odds ratio is $\hat{\theta}_{k}=\frac{n_{11 k} n_{22 k}}{n_{12 k} n_{21 k}}$
- The Mantel Haenszel estimator is of the form $\hat{\theta}=\frac{\sum_{k} r_{k} \hat{\theta}_{k}}{\sum_{k} r_{k}}$
- The weights are $r_{k}=\frac{n_{12 k} n_{21 k}}{n_{++k}}$
- The estimator simplifies to $\hat{\theta}_{M H}=\frac{\sum_{k} n_{11 k} n_{22 k} / n_{++k}}{\sum_{k} n_{12 k} n_{21 k} / n_{++k}}$
- SE of the log is given in Agresti (page 235) or Rosner (page 656)

Also $\log \hat{\theta}_{M H}=.758$ and $\hat{S E} E_{\log \hat{\theta}_{M H}}=.303$

[^1]
CMH test

Table of

contents

Outline

- $H_{0}: \theta_{1}=\ldots=\theta_{k}=1$ versus $H_{a}: \theta_{1}=\ldots=\theta_{k} \neq 1$
- The CHM test applies to other alternatives, but is most powerful for the H_{a} given above
- Same as testing conditional independence of the response and exposure given the stratifying variable
- CMH conditioned on the rows and columns for each of the k contingency tables resulting in k hypergeometric distributions and leaving only the $n_{11 k}$ cells free

CMH test cont'd

Table of

contents

Outline

- Under the conditioning and under the null hypothesis
- $E\left(n_{11 k}\right)=n_{1+k} n_{+1 k} / n_{++k}$
- $\operatorname{Var}\left(n_{11 k}\right)=n_{1+k} n_{2+k} n_{+1 k} n_{+2 k} / n_{++k}^{2}\left(n_{++k}-1\right)$
- The CMH test statistic is

$$
\frac{\left[\sum_{k}\left\{n_{11 k}-E\left(n_{11 k}\right)\right\}\right]^{2}}{\sum_{k} \operatorname{Var}\left(n_{11 k}\right)}
$$

- For large sample sizes and under H_{0}, this test statistic is $\chi^{2}(1)$ (regardless of how many tables you are summing up)

In R

$$
\begin{aligned}
& \text { dat <- } \operatorname{array}(c(11,10,25,27,16,22,4,10 \text {, } \\
& 14,7,5,12,2,1,14,16, \\
& 6,0,11,12,1,0,10,10 \text {, } \\
& 1,1,4,8,4,6,2,1) \text {, } \\
& c(2,2,8) \text {) } \\
& \text { mantelhaen.test (dat, correct }=\text { FALSE) }
\end{aligned}
$$

Results: $C M H_{T S}=6.38$
P-value: . 012
Test presents evidence to suggest that the treatment and response are not conditionally independent given center

Some final notes on CMH

Table of

 contents
Outline

- It's possible to perform an analogous test in a random effects logit model that benefits from a complete model specification
- It's also possible to test heterogeneity of the strata-specific odds ratios
- Exact tests (guarantee the type I error rate) are also possible exact $=$ TRUE in R

[^0]: ${ }^{1}$ From Agresti, Categorical Data Analysis, second edition

[^1]: ${ }^{2}$ Data from Agresti, Categorical Data Analysis, second edition

