Ingo Ruczinsk

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haenszel estimator

Lecture 23

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 22, 2015

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ingo Ruczinski

Table of contents

Outline

- Simpson's paradox
- Berkeley data
- Confounding
- Weighting
- Mantel/Haenszel estimator

1 Table of contents

2 Outline

- **3** Simpson's paradox
- 4 Berkeley data
- **5** Confounding
- 6 Weighting
- **7** Mantel/Haenszel estimator

Table of contents

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox Berkeley dat Confounding

Weighting

Mantel/Haenszel estimator

1 Simpson's paradox

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2 Weighting
- 3 CMH estimate
- 4 CMH test

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haenszel estimator

Simpson's (perceived) paradox

		Death	n penalty	
Victim	Defendant	yes	no	% yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
	White	53	430	11.0
	Black	15	176	7.9
White		64	451	12.4
Black		4	155	2.5

1

-

¹From Agresti, Categorical Data Analysis, second edition

Discussion

contents

Lecture 23

- Outline
- Simpson's paradox
- Berkeley data
- Confounding
- Weighting
- Mantel/Haenszel estimator

- Marginally, white defendants received the death penalty a greater percentage of time than black defendants
- Across white and black victims, black defendant's received the death penalty a greater percentage of time than white defendants
- Simpson's paradox refers to the fact that marginal and conditional associations can be opposing
- The death penalty was enacted more often for the murder of a white victim than a black victim. Whites tend to kill whites, hence the larger marginal association.

Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Wikipedia's entry on Simpson's paradox gives an example comparing two player's batting averages

	First	Second	Whole
	Half	Half	Season
Player 1	4/10 (.40)	25/100 (.25)	29/110 (.26)
Plater 2	35/100 (.35)	2/10 (.20)	37/110 (.34)

- Player 1 has a better batting average than Player 2 in both the first and second half of the season, yet has a worse batting average overall
- Consider the number of at-bats

Lecture 23

Simpson's

Mantel/Haenszel

paradox

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haenszel estimator

Berkeley admissions data

 The Berkeley admissions data is a well known data set regarding Simpsons paradox
 ?UCBAdmissions data(UCBAdmissions) apply(UCBAdmissions, c(1, 2), sum) Gender
 Admit Male Female Admitted 1198 557 Rejected 1493 1278 .445 .304 <- Acceptance rate

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haenszel estimator

Acceptance rate by department

```
> apply(UCBAdmissions, 3,
        function(x) c(x[1] / sum(x[1 : 2])),
                       x[3] / sum(x[3 : 4])
                       )
        )
Dept
      М
           F
   A 0.62 0.82
   B 0.63 0.68
   C 0.37 0.34
    0.33 0.35
   D
   E 0.28 0.24
   F 0.06 0.07
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haenszel estimator

Why? The application rates by department

> apply(l	з, с	(2, 3	3),	sum)			
Ι	Dept						
Gender	А	В	С	D	E	F	
Male	825	560	325	417	191	373	
Female	108	25	593	375	393	341	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discussion

Outline Simpson's

Lecture 23

- Berkeley data
- Confounding
- Weighting
- Mantel/Haenszel estimator

• Mathematically, Simpson's pardox is not paradoxical

a/b < c/de/f < g/h(a+e)/(b+f) > (c+g)/(d+h)

• More statistically, it says that the apparent relationship between two variables can change in the light or absence of a third

Confounding

contents

Lecture 23

- Outline
- Simpson's paradox
- Berkeley data
- Confounding
- Weighting
- Mantel/Haenszel estimator

- Variables that are correlated with both the explanatory and response variables can distort the estimated effect
 - Victim's race was correlated with defendant's race and death penalty
- One strategy to adjust for confounding variables is to **stratify** by the confounder and then combine the strata-specific estimates
 - Requires appropriately weighting the strata-specific estimates
- Unnecessary stratification reduces precision

Aside: weighting

- Suppose that you have two unbiased scales, one with variance 1 lb and and one with variance 9 lbs
 - Confronted with weights from both scales, would you give both measurements equal creedance?
 - Suppose that $X_1 \sim N(\mu, \sigma_1^2)$ and $X_2 \sim N(\mu, \sigma_2^2)$ where σ_1 and σ_2 are both known
 - log-likelihood for μ

$$-(x_1-\mu)^2/2\sigma_1^2-(x_2-\mu)^2/2\sigma_2^2$$

Lecture 23

Ingo Ruczinski

- Table of contents
- Outline
- Simpson's paradox
- Berkeley data
- Confounding

Weighting

Mantel/Haenszel estimator

Continued

• Derivative wrt μ set equal to 0

$$(x_1 - \mu)/\sigma_1^2 + (x_2 - \mu)/\sigma_2^2 = 0$$

Answer

$$\frac{x_1r_1 + x_2r_2}{r_1 + r_2} = x_1p + x_2(1-p)$$

where $r_i = 1/\sigma_i^2$ and $p = r_1/(r_1 + r_2)$

- Note, if X_1 has very low variance, its term dominates the estimate of μ
- General principle: instead of averaging over several unbiased estimates, take an average weighted according to inverse variances
- For our example $\sigma_1^2 = 1$, $\sigma_2^2 = 9$ so p = .9

Weighting

Lecture 23

Mantel/Haenszel estimator

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haensze estimator

Mantel/Haenszel estimator

- Let n_{ijk} be entry i, j of table k
- The k^{th} sample odds ratio is $\hat{\theta}_k = \frac{n_{11k}n_{22k}}{n_{12k}n_{21k}}$
- The Mantel Haenszel estimator is of the form $\hat{\theta} = \frac{\sum_{k} r_k \theta_k}{\sum_{k} r_k}$

• The weights are
$$r_k = rac{n_{12k}n_{21k}}{n_{++k}}$$

- The estimator simplifies to $\hat{\theta}_{MH} = \frac{\sum_k n_{11k} n_{22k}/n_{++k}}{\sum_k n_{12k} n_{21k}/n_{++k}}$
- SE of the log is given in Agresti (page 235) or Rosner (page 656)

Ingo Ruczinski

()	÷		

Simpson's paradox Berkeley dat Confounding

Mantel/Haensze estimator

				Cent	ter			
	1	2	3	4	5	6	7	8
	S F	S F	S F	S F	S F	S F	S F	S F
Т	11 25	16 4	14 5	2 14	6 11	1 10	1 4	4 2
С	10 27	22 10	7 12	1 16	0 12	0 10	1 8	6 1
n	73	52	38	33	29	21	14	13

S - Success, F - failure
T - Active Drug, C -
$$placebo^2$$

$$\hat{ heta}_{MH} = rac{(11 imes 27)/73 + (16 imes 10)/25 + \ldots + (4 imes 1)/13}{(10 imes 25)/73 + (4 imes 22)/25 + \ldots + (6 imes 2)/13)} = 2.13$$

Also $\log \hat{\theta}_{MH} = .758$ and $\hat{SE}_{\log \hat{\theta}_{MH}} = .303$

²Data from Agresti, Categorical Data Analysis, second edition - 💿 🔊 🗬

CMH test

- $H_0: \theta_1 = \ldots = \theta_k = 1$ versus $H_a: \theta_1 = \ldots = \theta_k \neq 1$
- The CHM test applies to other alternatives, but is most powerful for the *H_a* given above
- Same as testing conditional independence of the response and exposure given the stratifying variable
- CMH conditioned on the rows and columns for each of the k contingency tables resulting in k hypergeometric distributions and leaving only the n_{11k} cells free

Lecture 23

Ingo Ruczinski

- Table of contents
- Outline
- Simpson's paradox
- Berkeley data
- Confounding

Weighting

Mantel/Haensze estimator

CMH test cont'd

Table of contents

Lecture 23

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haensze estimator • Under the conditioning and under the null hypothesis

•
$$E(n_{11k}) = n_{1+k}n_{+1k}/n_{++k}$$

- $\operatorname{Var}(n_{11k}) = n_{1+k}n_{2+k}n_{+1k}n_{+2k}/n_{++k}^2(n_{++k}-1)$
- The CMH test statistic is

$$\frac{[\sum_k \{n_{11k} - E(n_{11k})\}]^2}{\sum_k \operatorname{Var}(n_{11k})}$$

• For large sample sizes and under H_0 , this test statistic is $\chi^2(1)$ (regardless of how many tables you are summing up)

In R

Table of contents

Lecture 23

Outline

Simpson's paradox Berkeley da

Confounding

Weighting

Mantel/Haensze estimator Results: $CMH_{TS} = 6.38$ P-value: .012

Test presents evidence to suggest that the treatment and response are not conditionally independent given center

Ingo Ruczinski

Table of contents

Outline

Simpson's paradox

Berkeley data

Confounding

Weighting

Mantel/Haensze estimator

Some final notes on CMH

- It's possible to perform an analogous test in a random effects logit model that benefits from a complete model specification
- It's also possible to test heterogeneity of the strata-specific odds ratios

• Exact tests (guarantee the type I error rate) are also possible exact = TRUE in R