Lecture 24

Ingo Ruczinski

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 24, 2015

Table of contents

(1) Table of contents
(2) Outline
(3) Case-control methods
(4) Rare disease assumption
(5) Exact inference for the odds ratio

Outline

Table of

contents

Outline

(1) Odds ratios for retrospective studies
(2) Odds ratios approximating the prospective RR
(3) Exact inference for the odds ratio

Case-control methods

	Lung cancer		
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- Case status obtained from records
- Cannot estimate P (Case \mid Smoker)
- Can estimate $P($ Smoker | Case)

Continued

- Can estimate odds ratio b/c

$$
\begin{aligned}
& \frac{\text { Odds(case } \mid \text { smoker })}{\text { Odds }\left(\text { case } \mid \text { smoker }^{c}\right)} \\
= & \frac{\text { Odds }(\text { smoker } \mid \text { case })}{\text { Odds }\left(\text { smoker } \mid \text { case }^{c}\right)}
\end{aligned}
$$

Proof

C-case, S - smoker

$$
\begin{aligned}
& \frac{\text { Odds(case } \mid \text { smoker) }}{\text { Odds(case } \left.\mid \text { smoker }^{c}\right)} \\
= & \frac{P(C \mid S) / P(\bar{C} \mid S)}{P(C \mid \bar{S}) / P(\bar{C} \mid \bar{S})} \\
= & \frac{P(C, S) / P(\bar{C}, S)}{P(C, \bar{S}) / P(\bar{C}, \bar{S})} \\
= & \frac{P(C, S) P(\bar{C}, \bar{S})}{P(C, \bar{S}) P(\bar{C}, S)}
\end{aligned}
$$

Exchange C and S and the result is obtained

Notes

Table of

contents

Outline

Case-control methods

- Sample $O R$ is $\frac{n_{11} n_{22}}{n_{12} n_{21}}$
- Sample $O R$ is unchanged if a row or column is multiplied by a constant
- Invariant to transposing
- Is related to $R R$

Notes continued

$$
\begin{aligned}
O R & =\frac{P(S \mid C) / P(\bar{S} \mid C)}{P(S \mid \bar{C}) / P(\bar{S} \mid \bar{C})} \\
& =\frac{P(C \mid S) / P(\bar{C} \mid S)}{P(C \mid \bar{S}) / P(\bar{C} \mid \bar{S})} \\
& =\frac{P(C \mid S)}{P(C \mid \bar{S})} \frac{P(\bar{C} \mid \bar{S})}{P(\bar{C} \mid S)} \\
& =R R \times \frac{1-P(C \mid \bar{S})}{1-P(C \mid S)}
\end{aligned}
$$

- $O R$ approximate $R R$ if $P(C \mid \bar{S})$ and $P(C \mid S)$ are small (or if they are nearly equal)

Rare disease assumption

Table of
 contents

Outline

	Disease		
Exposure	Yes	No	Total
Yes	9	1	10
No	1	999	1000
	10	1000	1010

- Cross-sectional data
- $P(\hat{D})=10 / 1010 \approx .01$
- $\hat{O R}=(9 \times 999) /(1 \times 1)=8991$
- $\hat{R R}=(9 / 10) /(1 / 1000)=900$
- D is rare in the sample
- D is not rare among the exposed

Notes

Table of

contents

Outline

Case-control methods

Rare disease assumption

- $O R=1$ implies no association
- $O R>1$ positive association
- $O R<1$ negative association
- For retrospective CC studies, OR can be interpreted prospectively
- For diseases that are rare among the cases and controls, the $O R$ approximates the $R R$
- Delta method SE for $\log O R$ is

$$
\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}
$$

Example

Table of contents

	Lung cancer		
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

1

- $\hat{O R}=\frac{688 \times 59}{21 \times 650}=3.0$
- $\hat{S E}_{\log \hat{O R}}=\sqrt{\frac{1}{688}+\frac{1}{650}+\frac{1}{21}+\frac{1}{59}}=.26$
- $\mathrm{Cl}=\log (3.0) \pm 1.96 \times .26=[.59,1.61]$
- The estimated odds of lung cancer for smokers are 3 times that of the odds for non-smokers with an interval of $[\exp (.59), \exp (1.61)]=[1.80,5.00]$

[^0]
Exact inference for the OR

Table of
 contents

Outline

	Lung cancer		
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- X the number of smokers for the cases
- Y the number of smokers for the controls
- Calculate an exact Cl for the odds ratio
- Have to eliminate a nuisance parameter

Notation

Table of

contents

Outline

- $\operatorname{logit}(p)=\log \{p /(1-p)\}$ is the log-odds
- Differences in logits are log-odds ratios
- $\operatorname{logit}\{P($ Smoker \mid Case $)\}=\delta$
- $P($ Smoker \mid Case $)=e^{\delta} /\left(1+e^{\delta}\right)$
- $\operatorname{logit}\{P($ Smoker \mid Control $)\}=\delta+\theta$
- $P($ Smoker \mid Control $)=e^{\delta+\theta} /\left(1+e^{\delta+\theta}\right)$
- θ is the log-odds ratio
- δ is the nuisance parameter

Notation

Table of

contents

Outline

- X is binomial with n_{1} trials and success probability $e^{\delta} /\left(1+e^{\delta}\right)$
- Y is binomial with n_{2} trials and success probability $e^{\delta+\theta} /\left(1+e^{\delta+\theta}\right)$

$$
\begin{aligned}
P(X=x) & =\binom{n_{1}}{x}\left\{\frac{e^{\delta}}{1+e^{\delta}}\right\}^{x}\left\{\frac{1}{1+e^{\delta}}\right\}^{n_{1}-x} \\
& =\binom{n_{1}}{x} e^{x \delta}\left\{\frac{1}{1+e^{\delta}}\right\}^{n_{1}}
\end{aligned}
$$

$$
\begin{gathered}
P(X=x)=\binom{n_{1}}{x} e^{x \delta}\left\{\frac{1}{1+e^{\delta}}\right\}^{n_{1}} \\
P(Y=z-x)=\binom{n_{2}}{z-x} e^{(z-x) \delta+(z-x) \theta}\left\{\frac{1}{1+e^{\delta+\theta}}\right\}^{n_{2}} \\
P(X+Y=z)=\sum_{u} P(X=u) P(Y=z-u) \\
P(X=x \mid X+Y=z)=\frac{P(X=x) P(Y=z-x)}{\sum_{u} P(X=u) P(Y=z-u)}
\end{gathered}
$$

Non-central hypergeometric distribution

$$
P(X=x \mid X+Y=z ; \theta)=\frac{\binom{n_{1}}{x}\binom{n_{2}}{z-x} e^{x \theta}}{\sum_{u}\binom{n_{1}}{u}\binom{n_{2}}{z-u} e^{u \theta}}
$$

- θ is the \log odds ratio
- This distribution is used to calculate exact hypothesis tests for $H_{0}: \theta=\theta_{0}$
- Inverting exact tests yields exact confidence intervals for the odds ratio
- Simplifies to the hypergeometric distribution for $\theta=0$

[^0]: ${ }^{1}$ Data from Agresti, Categorical Data Analysis, second edition

