Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

Lecture 24

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 24, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

1 Table of contents

2 Outline

3 Case-control methods

4 Rare disease assumption

5 Exact inference for the odds ratio

Table of contents

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 24 Ingo Ruczins

Table of contents

Outline

Case-contro methods

Rare disease assumption

- 1 Odds ratios for retrospective studies
- 2 Odds ratios approximating the prospective RR
- 3 Exact inference for the odds ratio

Ingo Ruczinski

Table of contents

Outline

Case-control methods

Rare disease assumption

Exact inference for the odds ratio

Case-control methods

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

	Lung		
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- Case status obtained from records
- Cannot estimate *P*(Case | Smoker)
- Can estimate *P*(Smoker | Case)

Continued

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 24

Ingo Ruczinski

Table of contents

Outline

Case-control methods

Rare disease assumption

Exact inference for the odds ratio • Can estimate odds ratio b/c

 $\frac{Odds(case \mid smoker)}{Odds(case \mid smoker^{c})}$ $= \frac{Odds(smoker \mid case)}{Odds(smoker \mid case^{c})}$

Ingo Ruczinski

Table of contents

Outline

Case-control methods

Rare disease assumption

Exact inference for the odds ratio C - case, S - smoker

Odds(case | smoker) $Odds(case | smoker^{c})$ $= \frac{P(C \mid S)/P(\bar{C} \mid S)}{P(C \mid \bar{S})/P(\bar{C} \mid \bar{S})}$ $= \frac{P(C,S)/P(\bar{C},S)}{P(C,\bar{S})/P(\bar{C},\bar{S})}$ $= \frac{P(C,S)P(\bar{C},\bar{S})}{P(C,\bar{S})P(\bar{C},S)}$

Exchange C and S and the result is obtained

Proof

Notes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 24

Ingo Ruczinski

Table of contents

Outline

Case-control methods

Rare disease assumption

- Sample *OR* is $\frac{n_{11}n_{22}}{n_{12}n_{21}}$
- Sample *OR* is unchanged if a row or column is multiplied by a constant
- Invariant to transposing
- Is related to RR

Notes continued

$$PR = \frac{P(S \mid C) / P(\bar{S} \mid C)}{P(S \mid \bar{C}) / P(\bar{S} \mid \bar{C})}$$
$$= \frac{P(C \mid S) / P(\bar{C} \mid \bar{S})}{P(C \mid \bar{S}) / P(\bar{C} \mid \bar{S})}$$
$$= \frac{P(C \mid S)}{P(C \mid \bar{S})} \frac{P(\bar{C} \mid \bar{S})}{P(\bar{C} \mid \bar{S})}$$
$$= RR \times \frac{1 - P(C \mid \bar{S})}{1 - P(C \mid S)}$$

0

 OR approximate RR if P(C | S̄) and P(C | S̄) are small (or if they are nearly equal)

Case-control methods

Lecture 24

assumption

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

Rare disease assumption

	Dis	ease	
Exposure	Yes	No	Total
Yes	9	1	10
No	1	999	1000
	10	1000	1010

- Cross-sectional data
- $P(D) = 10/1010 \approx .01$
- $\hat{OR} = (9 \times 999)/(1 \times 1) = 8991$
- $\hat{RR} = (9/10)/(1/1000) = 900$
- D is rare in the sample
- D is not rare among the exposed

Notes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 24

Ingo Ruczinski

- Table of contents
- Outline
- Case-contro methods
- Rare disease assumption
- Exact inference for the odds ratio

- OR = 1 implies no association
- *OR* > 1 positive association
- OR < 1 negative association
- For retrospective CC studies, *OR* can be interpreted prospectively
- For diseases that are rare among the cases and controls, the *OR* approximates the *RR*
- Delta method SE for log OR is

$$\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

	Lung	cancer	
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

1

$$\hat{OR} = \frac{688 \times 59}{21 \times 650} = 3.0$$

•
$$\hat{SE}_{\log \hat{OR}} = \sqrt{\frac{1}{688} + \frac{1}{650} + \frac{1}{21} + \frac{1}{59}} = .26$$

- $CI = \log(3.0) \pm 1.96 \times .26 = [.59, 1.61]$
- The estimated odds of lung cancer for smokers are 3 times that of the odds for non-smokers with an interval of [exp(.59), exp(1.61)] = [1.80, 5.00]

Example

¹Data from Agresti, Categorical Data Analysis, second edition 🛌 🔊 🤈

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

Exact inference for the OR

	Lung		
${\tt Smoker}$	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- X the number of smokers for the cases
- Y the number of smokers for the controls
- Calculate an exact CI for the odds ratio
- Have to eliminate a nuisance parameter

Notation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 24

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

- $logit(p) = log\{p/(1-p)\}$ is the **log-odds**
- Differences in logits are log-odds ratios
- $logit{P(Smoker | Case)} = \delta$
 - $P(\text{Smoker} \mid \text{Case}) = e^{\delta}/(1+e^{\delta})$
- $logit{P(Smoker | Control)} = \delta + \theta$
 - $P(\text{Smoker} \mid \text{Control}) = e^{\delta + \theta} / (1 + e^{\delta + \theta})$
- θ is the log-odds ratio
- δ is the nuisance parameter

Notation

- X is binomial with n_1 trials and success probability $e^{\delta}/(1+e^{\delta})$
- Y is binomial with n_2 trials and success probability $e^{\delta+ heta}/(1+e^{\delta+ heta})$

$$P(X = x) = \binom{n_1}{x} \left\{ \frac{e^{\delta}}{1 + e^{\delta}} \right\}^x \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1 - x}$$
$$= \binom{n_1}{x} e^{x\delta} \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1}$$

Lecture 24

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Ingo Ruczinski

Table of contents

Outline

Case-contro methods

Rare disease assumption

Exact inference for the odds ratio

$$P(X = x) = {\binom{n_1}{x}} e^{x\delta} \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1}$$
$$P(Y = z - x) = {\binom{n_2}{z - x}} e^{(z - x)\delta + (z - x)\theta} \left\{ \frac{1}{1 + e^{\delta + \theta}} \right\}^{n_2}$$
$$P(X + X = z) = \sum P(X = u)P(X = z - u)$$

$$P(X+Y=z) = \sum_{u} P(X=u)P(Y=z-u)$$

$$P(X = x \mid X + Y = z) = \frac{P(X = x)P(Y = z - x)}{\sum_{u} P(X = u)P(Y = z - u)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Non-central hypergeometric distribution

$$P(X = x \mid X + Y = z; \theta) = \frac{\binom{n_1}{x}\binom{n_2}{z-x}e^{x\theta}}{\sum_u \binom{n_1}{u}\binom{n_2}{z-u}e^{u\theta}}$$

- θ is the log odds ratio
- This distribution is used to calculate exact hypothesis tests for $H_0: \theta = \theta_0$
- Inverting exact tests yields exact confidence intervals for the odds ratio
- Simplifies to the hypergeometric distribution for $\theta = 0$

Lecture 24

ingo ituczinsi

Table of contents

Outline

Case-contro methods

Rare disease assumption