Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

Lecture 25

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 24, 2015

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ingo Ruczinski

Table of contents

- Outline
- Matched pairs data
- Dependence
- Marginal homogeneity
- McNemar's test
- Estimation
- Relationship with CMH
- Marginal odds ratios
- Conditiona versus marginal
- Conditional ML

1 Table of contents

- 2 Outline
- 3 Matched pairs data
- 4 Dependence
- **5** Marginal homogeneity
- 6 McNemar's test
- 7 Estimation
- 8 Relationship with CMH
- 9 Marginal odds ratios
- Conditional versus marginal
- Conditional ML

Table of contents

< □ > < □ > < 三 > < 三 > < 三 > < ○ < ○ < ○ < ○ < ○ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Matched pairs data

Lecture 25

- Dependence
- Marginal homogeneit
- McNemar' test
- Estimation
- Relationship with CMH
- Marginal odds ratios
- Conditiona versus marginal
- Conditional ML

- 1 Hypothesis tests of marginal homgeneity
- 2 Estimating marginal risk differences
- 8 Estimating marginal odds ratios
- A brief note on the distinction between conditional and marginal odds ratios

Ingo Ruczinski

Table of contents

Outline

Matched pairs data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML 1

Matched pairs binary data

First	Secon		
survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

	Ca		
Controls	Exposed	Unexposed	Total
Exposed	27	29	56
Unexposed	3	4	7
Total	30	33	63

 $^1\textsc{Both}$ data sets from Agresti, Categorical Data Analysis, second edition ${\tt QC}$

Dependence

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 25

- Ingo Ruczinski
- Table of contents
- Outline
- Matched pain data

Dependence

- Marginal homogeneit<u>:</u>
- McNemar's test
- Estimation
- Relationship with CMH
- Marginal odds ratios
- Conditional versus marginal
- Conditional ML

Matched binary can arise from

- Measuring a response at two occasions
- Matching on case status in a retrospective study
- Matching on exposure status in a prospective or cross-sectional study
- The pairs on binary observations are dependent, so our existing methods do not apply
- We will discuss the process of making conclusions about the marginal probabilities and odds

Notation

time 2					
time 1	Yes	No	Total		
Yes	n_{11}	n_{12}	n_{1+}		
no	n_{21}	<i>n</i> ₂₂	<i>n</i> ₂₊		
Total	n_{+1}	<i>n</i> ₊₂	п		
time 2					
time 1	Yes	No	Total		
Yes	π_{11}	π_{12}	π_{1+}		
no	π_{21}	π_{22}	π_{2+}		
Total	$\pi_{\pm 1}$	π_{+2}	1		

- We assume that the (n₁₁, n₁₂, n₂₁, n₂₂) are multinomial with n trials and probabilities (π₁₁, π₁₂, π₂₁, π₂₂)
- π₁₊ and π₊₁ are the marginal probabilities of a yes response at the two occasions
- $\pi_{1+} = P(\text{Yes} \mid \text{Time 1})$
- π₊₁ = P(Yes | Time 2)

Lecture 25

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

Marginal homogeneity

- Marginal homogeneity is the hypothesis $H_0: \pi_{1+}=\pi_{+1}$
- Marginal homogeneity is equivalent to symmetry $H_0: \pi_{12} = \pi_{21}$
- The obvious estimate of $\pi_{12} \pi_{21}$ is $n_{12}/n n_{21}/n$
- Under H_0 a consistent estimate of the variance is $(n_{12} + n_{21})/n^2$
- Therefore

$$\frac{(n_{12}-n_{21})^2}{n_{12}+n_{21}}$$

follows an asymptotic χ^2 distribution with 1 degree of freedom

McNemar's test

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of contents

Lecture 25

Outline

Matched pairs data

Dependence

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

- The test from the previous page is called McNemar's test
- Notice that only the discordant cells enter into the test
 - n_{12} and n_{21} carry the relevant information about whether or not π_{1+} and π_{+1} differ
 - *n*₁₁ and *n*₂₂ contribute information to estimating the magnitude of this difference

Example

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Test statistic $\frac{(80-150)^2}{86+150} = 17.36$
- P-value = 3×10^{-5}
- Hence we reject the null hypothesis and conclude that there is evidence to suggest a change in opinion between the two polls
- In R

Lecture 25

McNemar's

test

The correct option applies a continuity correction

Estimation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of contents

Lecture 25

Outline

Matched pa data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

- Let $\hat{\pi}_{ij} = n_{ij}/n$ be the sample proportions
- $d = \hat{\pi}_{1+} \hat{\pi}_{+1} = (n_{12} n_{21})/n$ estimates the difference in the marginal proportions
- The variance of d is

$$\sigma_d^2 = \{\pi_{1+}(1-\pi_{1+}) + \pi_{+1}(1-\pi_{+1}) - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})\}/n$$

- $\frac{d (\pi_{1+} \pi_{+1})}{\hat{\sigma}_d}$ follows an asymptotic normal distribution
- Compare σ_d^2 with what we would use if the proportions were independent

Example

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Lecture 25
- Ingo Ruczinski
- Table of contents
- Outline
- Matched pain data
- Dependence
- Marginal homogeneit
- McNemar' test

Estimation

- Relationship with CMH
- Marginal odds ratios
- Conditiona versus marginal
- Conditional ML

- d = 944/1600 880/1600 = .59 .55 = .04
- $\hat{\pi}_{11} = .50$, $\hat{\pi}_{12} = .09$, $\hat{\pi}_{21} = .05$, $\hat{\pi}_{22} = .36$
- $\hat{\sigma}_d^2 = \{.59(1-.59)+.55(1-.55)-2(.50\times.36-.09\times.05)\}/1600$
- $\hat{\sigma}_d = .0095$
- 95% CI .04 \pm 1.96 \times .0095 = [.06, .02]
- Note ignoring the dependence yields $\hat{\sigma}_d=.0175$

Ingo Ruczinski

Table of contents

Outline

Matched pai data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

Relationship with CMH test

• Each subject's (or matched pair's) responses can be represented as one of four tables.

	Response		Response		
Time	Yes	No	Time	Yes	No
First	1	0	First	1	0
Second	1	0	Second	0	1
Response					
	Resp	onse		Resp	onse
Time	Resp Yes	onse No	Time	Resp Yes	onse No
Time First	Resp Yes O	onse No 1	Time First	Resp Yes O	onse No 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Result

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Lecture 25
- Table of contents
- Outline
- Matched pairs data
- Dependence
- Marginal homogeneit
- McNemar's test
- Estimation

Relationship with CMH

- Marginal odds ratios
- Conditional versus marginal
- Conditional ML

- McNemar's test is equivalent to the CMH test where subject is the stratifying variable and each 2×2 table is the observed zero-one table for that subject
- This representation is only useful for conceptual purposes

Exact version

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Table of

Lecture 25

Outline

- Matched pair data
- Dependence
- Marginal homogeneit
- McNemar's test
- Estimation

Relationship with CMH

- Marginal odds ratios
- Conditiona versus marginal
- Conditional ML

- Consider the cells n_{12} and n_{21}
- Under H_{0} , $\pi_{12}/(\pi_{12}+\pi_{21})=.5$
- Therefore, under H_0 , $n_{21} | n_{21} + n_{12}$ is binomial with success probability .5 and $n_{21} + n_{12}$ trials
- We can use this result to come up with an exact P-value for matched pairs data

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML • Consider the approval rating data

- $H_0: \pi_{21} = \pi_{12}$ versus $H_a: \pi_{21} < \pi_{12} \ (\pi_{+1} < \pi_{1+})$
- $P(X \le 86 \mid 86 + 150) = .000$ where X is binomial with 236 trials and success probability p = .5

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• For two sided tests, double the smaller of the two one-sided tests

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

Estimating the marginal odds ratio

• The marginal odds ratio is

$$\frac{\pi_{1+}/\pi_{2+}}{\pi_{+1}/\pi_{+2}} = \frac{\pi_{1+}\pi_{+2}}{\pi_{+1}\pi_{2+}}$$

• The maximum likelihood estimate of the margina *log* odds ratio is

$$\hat{\theta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

• The asymptotic variance of this estimator is

$$\{ (\pi_{1+}\pi_{2+})^{-1} + (\pi_{+1}\pi_{+2})^{-1} \\ - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})/(\pi_{1+}\pi_{2+}\pi_{+1}\pi_{+2}) \} / n$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

l able of contents

Lecture 25

- Outline
- Matched pair data
- Dependence
- Marginal homogeneit
- McNemar's test
- Estimation
- Relationship with CMH
- Marginal odds ratios
- Conditiona versus marginal
- Conditional ML

- In the approval rating example the marginal OR compares the odds of approval at time 1 to that at time 2
- $\hat{\theta} = \log(944 \times 720/880 \times 656) = .16$
- Estimated standard error = .039
- CI for the log odds ratio = $.16 \pm 1.96 \times .039 = [.084, .236]$

Ingo Ruczinski

Table of contents

Outline

Matched pairs data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditiona ML

Conditional versus marginal odds

First	Secon		
survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneit<u>:</u>

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Conditional versus marginal odds

- n_{ij} cell counts
- n total sample size
- π_{ij} the multinomial probabilities
- The ML estimate of the marginal log odds ratio is

$$\hat{\theta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

• The asymptotic variance of this estimator is

$$\{ (\pi_{1+}\pi_{2+})^{-1} + (\pi_{+1}\pi_{+2})^{-1} \\ - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})/(\pi_{1+}\pi_{2+}\pi_{+1}\pi_{+2}) \} / n$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conditional ML

• Consider the following model

logit{P(Person i says Yes at Time 1)} = $\alpha + U_i$ logit{P(Person i says Yes at Time 2)} = $\alpha + \gamma + U_i$

- Each U_i contains person-specific effects. A person with a large U_i is likely to answer Yes at both occasions.
- γ is the log odds ratio comparing a response of Yes at Time 1 to a response of Yes at Time 2.
- γ is subject specific effect. If you subtract the log odds of a yes response for two different people, the U_i terms would not cancel

Ingo Ruczinski

Table of contents

Outline

Matched pair data

Dependence

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Ingo Ruczinski

Table of contents

- Outline
- Matched pai data
- Dependence
- Marginal homogeneit
- McNemar's test
- Estimation
- Relationship with CMH
- Marginal odds ratios
- Conditional versus marginal

Conditional ML

Conditional ML cont'd

- One way to eliminate the U_i and get a good estimate of γ is to condition on the total number of Yes responses for each person
 - If they answered Yes or No on both occasions then you know both responses
 - Therefore, only discordant pairs have any relevant information after conditioning
- The conditional ML estimate for γ and its SE turn out to be

$$\log\{n_{21}/n_{12}\} = \sqrt{1/n_{21}+1/n_{12}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ingo Ruczinski

Table of contents

Outline

Matched pai data

Dependence

Marginal homogeneit<u>:</u>

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Distinctions in interpretations

- The marginal ML has a marginal interpretation. The effect is averaged over all of the values of U_i .
- The conditional ML estimate has a subject specific interpretation.
- Marginal interpretations are more useful for policy type statements. Policy makers tend to be interested in how factors influence populations.
- Subject specific interpretations are more useful in clinical applications. Physicians are interested in how factors influence individuals.