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Outline

1 Hypothesis tests of marginal homgeneity

2 Estimating marginal risk differences

3 Estimating marginal odds ratios

4 A brief note on the distinction between conditional and
marginal odds ratios
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Matched pairs binary data

First Second Survey

survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600

Cases

Controls Exposed Unexposed Total

Exposed 27 29 56

Unexposed 3 4 7

Total 30 33 63

1

1Both data sets from Agresti, Categorical Data Analysis, second edition
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Dependence

• Matched binary can arise from
• Measuring a response at two occasions
• Matching on case status in a retrospective study
• Matching on exposure status in a prospective or

cross-sectional study

• The pairs on binary observations are dependent, so our
existing methods do not apply

• We will discuss the process of making conclusions about
the marginal probabilities and odds
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Notation

time 2

time 1 Yes No Total

Yes n11 n12 n1+
no n21 n22 n2+

Total n+1 n+2 n

time 2

time 1 Yes No Total

Yes π11 π12 π1+
no π21 π22 π2+

Total π+1 π+2 1

• We assume that the (n11, n12, n21, n22) are multinomial
with n trials and probabilities (π11, π12, π21, π22)

• π1+ and π+1 are the marginal probabilities of a yes
response at the two occasions

• π1+ = P(Yes | Time 1)
• π+1 = P(Yes | Time 2)
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Marginal homogeneity

• Marginal homogeneity is the hypothesis H0 : π1+ = π+1

• Marginal homogeneity is equivalent to symmetry
H0 : π12 = π21

• The obvious estimate of π12 − π21 is n12/n − n21/n

• Under H0 a consistent estimate of the variance is
(n12 + n21)/n2

• Therefore
(n12 − n21)2

n12 + n21

follows an asymptotic χ2 distribution with 1 degree of
freedom
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McNemar’s test

• The test from the previous page is called McNemar’s test

• Notice that only the discordant cells enter into the test
• n12 and n21 carry the relevant information about whether

or not π1+ and π+1 differ
• n11 and n22 contribute information to estimating the

magnitude of this difference
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Example

• Test statistic (80−150)2

86+150 = 17.36

• P-value = 3× 10−5

• Hence we reject the null hypothesis and conclude that
there is evidence to suggest a change in opinion between
the two polls

• In R

mcnemar.test(matrix(c(794, 86, 150, 570), 2),

correct = FALSE)

The correct option applies a continuity correction
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Estimation

• Let π̂ij = nij/n be the sample proportions

• d = π̂1+ − π̂+1 = (n12 − n21)/n estimates the difference in
the marginal proportions

• The variance of d is

σ2d = {π1+(1−π1+)+π+1(1−π+1)−2(π11π22−π12π21)}/n

• d−(π1+−π+1)
σ̂d

follows an asymptotic normal distribution

• Compare σ2d with what we would use if the proportions
were independent
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Example

• d = 944/1600− 880/1600 = .59− .55 = .04

• π̂11 = .50, π̂12 = .09, π̂21 = .05, π̂22 = .36

• σ̂2d =
{.59(1− .59)+ .55(1− .55)−2(.50× .36− .09× .05)}/1600

• σ̂d = .0095

• 95% CI - .04± 1.96× .0095 = [.06, .02]

• Note ignoring the dependence yields σ̂d = .0175
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Relationship with CMH test

• Each subject’s (or matched pair’s) responses can be
represented as one of four tables.

Response

Time Yes No

First 1 0

Second 1 0

Response

Time Yes No

First 1 0

Second 0 1

Response

Time Yes No

First 0 1

Second 1 0

Response

Time Yes No

First 0 1

Second 0 1



Lecture 25

Ingo Ruczinski

Table of
contents

Outline

Matched pairs
data

Dependence

Marginal
homogeneity

McNemar’s
test

Estimation

Relationship
with CMH

Marginal odds
ratios

Conditional
versus
marginal

Conditional
ML

Result

• McNemar’s test is equivalent to the CMH test where
subject is the stratifying variable and each 2×2 table is the
observed zero-one table for that subject

• This representation is only useful for conceptual purposes
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Exact version

• Consider the cells n12 and n21

• Under H0, π12/(π12 + π21) = .5

• Therefore, under H0, n21 | n21 + n12 is binomial with
success probability .5 and n21 + n12 trials

• We can use this result to come up with an exact P-value
for matched pairs data
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• Consider the approval rating data

• H0 : π21 = π12 versus Ha : π21 < π12 (π+1 < π1+)

• P(X ≤ 86 | 86 + 150) = .000 where X is binomial with
236 trials and success probability p = .5

• For two sided tests, double the smaller of the two
one-sided tests
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Estimating the marginal odds ratio

• The marginal odds ratio is

π1+/π2+
π+1/π+2

=
π1+π+2

π+1π2+

• The maximum likelihood estimate of the margina log odds
ratio is

θ̂ = log{π̂1+π̂+2/π̂+1π̂2+}

• The asymptotic variance of this estimator is

{(π1+π2+)−1 + (π+1π+2)−1

− 2(π11π22 − π12π21)/(π1+π2+π+1π+2)}/n
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Example

• In the approval rating example the marginal OR compares
the odds of approval at time 1 to that at time 2

• θ̂ = log(944× 720/880× 656) = .16

• Estimated standard error = .039

• CI for the log odds ratio = .16± 1.96× .039 = [.084, .236]
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Conditional versus marginal odds

First Second Survey

survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600
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Conditional versus marginal odds

• nij cell counts

• n total sample size

• πij the multinomial probabilities

• The ML estimate of the marginal log odds ratio is

θ̂ = log{π̂1+π̂+2/π̂+1π̂2+}

• The asymptotic variance of this estimator is

{(π1+π2+)−1 + (π+1π+2)−1

− 2(π11π22 − π12π21)/(π1+π2+π+1π+2)}/n
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Conditional ML

• Consider the following model

logit{P(Person i says Yes at Time 1)} = α + Ui

logit{P(Person i says Yes at Time 2)} = α + γ + Ui

• Each Ui contains person-specific effects. A person with a
large Ui is likely to answer Yes at both occasions.

• γ is the log odds ratio comparing a response of Yes at
Time 1 to a response of Yes at Time 2.

• γ is subject specific effect. If you subtract the log odds
of a yes response for two different people, the Ui terms
would not cancel
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Conditional ML cont’d

• One way to eliminate the Ui and get a good estimate of γ
is to condition on the total number of Yes responses for
each person

• If they answered Yes or No on both occasions then you
know both responses

• Therefore, only discordant pairs have any relevant
information after conditioning

• The conditional ML estimate for γ and its SE turn out to
be

log{n21/n12}
√

1/n21 + 1/n12
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Distinctions in interpretations

• The marginal ML has a marginal interpretation. The effect
is averaged over all of the values of Ui .

• The conditional ML estimate has a subject specific
interpretation.

• Marginal interpretations are more useful for policy type
statements. Policy makers tend to be interested in how
factors influence populations.

• Subject specific interpretations are more useful in clinical
applications. Physicians are interested in how factors
influence individuals.
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