Lecture 28

Ingo Ruczinski

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 3, 2015

Table of contents

Table of
contents

Outline

Multiplicity
Bonferoni
FDR
(2) Outline
(3) Multiplicity
(4) Bonferoni

(5) FDR

Outline

(1) Familywise error rates
(2) Bonferoni procedure
(3) Performance of Bonferoni with multiple independent tests
4. False discovery rate procedure

Multiplicity

Table of

contents

Outline

Multiplicity

- After rejecting a χ^{2} omnibus test you do all pairwise comparisons
- You conducted a study with 20 outcomes and 30 different combinations of covariates. You consider significance at all combinations.
- You compare diseased tissue versus normal tissue expression levels for $20 k$ genes
- You compare rest versus active at $300 k$ voxels in an fMRI study

Multiplicity

Table of

 contents
Outline

Multiplicity

- Performing two α-level tests: H_{0}^{1} versus H_{a}^{1} and H_{0}^{2} versus H_{a}^{2} E_{1} Reject H_{0}^{1} and E_{2} Reject H_{0}^{2}

FWE $\quad P$ (one or more false rej $\left.\mid H_{0}^{1}, H_{0}^{2}\right)$
$=P\left(E_{1} \cup E_{2} \mid H_{0}^{1}, H_{0}^{2}\right)$
$=P\left(E_{1} \mid H_{0}^{1}, H_{0}^{2}\right)+P\left(E_{2} \mid H_{0}^{1}, H_{0}^{2}\right)$
$-P\left(E_{1} \cap E_{2} \mid H_{0}^{1}, H_{0}^{2}\right)$
$\leq P\left(E_{1} \mid H_{0}^{1}, H_{0}^{2}\right)+P\left(E_{2} \mid H_{0}^{1}, H_{0}^{2}\right)$
$=2 \times \alpha$
Result: The familywise error rate for k hypotheses tested at level α is bounded by $k \alpha$

Proof

Table of

contents

Outline

Multiplicity
Bonferoni
FDR

$$
\begin{aligned}
F W E & =P(\text { one or more false rej }) \\
& =P\left(\cup_{i=1}^{k} E_{i}\right) \\
& =P\left\{E_{1} \cup\left(\cup_{i=2}^{k} E_{i}\right)\right\} \\
& \leq P\left(E_{1}\right)+P\left(\cup_{i=2}^{k} E_{i}\right) \\
& \vdots \\
& \leq P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{k}\right) \\
& =k \alpha
\end{aligned}
$$

Other direction

- The FWE is no larger than $k \alpha$ where k is the number of tests
- The FWE is no smaller than α

$$
P\left(\cup_{i=1}^{k} E_{i}\right) \geq P\left(E_{1}\right)=\alpha
$$

- The lower bound is obtained when the E_{i} are identical $E_{1}=E_{2}=\ldots=E_{k}$
- Bonferoni's tests each individual hypothesis at level $\alpha^{*}=\alpha / k$
- The FWE is no larger than $k \alpha^{*}=k \alpha / k=\alpha$
- The FWE is no smaller than α / k

Bonferoni's procedure

If α^{*} is small and the tests are independent, then the upper bound on the FWE is nearly obtained

$$
\begin{aligned}
F W E & =P(\text { one or more false rej }) \\
& =1-P(\text { no false rej }) \\
& =1-P\left(\cap \cap_{i=1}^{k} \bar{E}_{i}\right) \\
& =1-\left(1-\alpha^{*}\right)^{k} \\
& \approx 1-\left(1-k \alpha^{*}\right) \\
& =k \alpha^{*}=\alpha
\end{aligned}
$$

Scratch work

Recall the approximation for α^{*} near 0

$$
\frac{f\left(\alpha^{*}\right)-f(0)}{\alpha^{*}-0} \approx f^{\prime}(0)
$$

hence

$$
f\left(\alpha^{*}\right) \approx f(0)+\alpha^{*} f^{\prime}(0)
$$

In our case $f\left(\alpha^{*}\right)=\left(1-\alpha^{*}\right)^{k}$ so $f(0)=1$
$f^{\prime}\left(\alpha^{*}\right)=-k\left(1-\alpha^{*}\right)^{k-1}$ so $f^{\prime}(0)=-k$
Therefore $\left(1-\alpha^{*}\right)^{k} \approx 1-k \alpha^{*}$

Notes

- For Bonferoni's procedure $\alpha^{*}=\alpha / k$ so will be close to 0 for a large number of tests
- When there are lots of tests that are (close to) independent, the upper bound on the FWE used is appropriate
- When the test are closely related, then the FWE will be closer to the lower bound, and Bonferoni's procedure is conservative
- Is the familywise error rate always the most appropriate quantity to control for?

FDR

- The false discovery rate is the proportion of tests that are falsely declared significant
- Controlling the FDR is less conservative than controlling the FWE rate
- Introduced by Benjamini and Hochberg

Benjamini and Hochberg procedure

(1) Order your k p-values, say $p_{1}<p_{2}<\ldots<p_{k}$
(2) Define $q_{i}=k p_{i} / i$
(3) Define $F_{i}=\min \left(q_{i}, \ldots, q_{k}\right)$
(4) Reject for all i so that F_{i} is less than the desired FDR

Note that the F_{i} are increasing, so you only need to find the largest one so that $F_{i}<F D R$

Example

1st 10 of 50 SNPs (Rosner page 581)

Gene	i	p_{i}	$q_{i}=k p_{i} / i$	F_{i}
30	1	$<.0001$.0035	.0035
20	2	.011	.28	.16
48	3	.017	.28	.16
50	4	.017	.22	.16
4	5	.018	.18	.16
40	6	.019	.16	.16
7	7	.026	.18	.18
14	8	.034	.21	.21
26	9	.042	.23	.23
47	10	.048	.24	.24

Example

- Bonferoni cutoff $.05 / 50=.001$; only the first Gene is significant
- For a FDR of $0-15 \%$; only the first Gene would be declared significant
- For a FDR of $16-20 \%$, the first 7 would be significant

