Lecture 28 Ingo Ruczinski

Table of contents Outline Multiplicity Bonferoni EDR

Lecture 28

Ingo Ruczinski

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 3, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Lecture 28

Ingo Ruczinski

Table of contents

Outline Multiplicity Bonferoni

1 Table of contents

2 Outline

3 Multiplicity

4 Bonferoni

5 FDR

Table of contents

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

Lecture 28

Multiplicity

Bonferor

- 1 Familywise error rates
- 2 Bonferoni procedure
- 3 Performance of Bonferoni with multiple independent tests
- 4 False discovery rate procedure

Multiplicity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Outline
- Multiplicity

Lecture 28

Bonferon FDR

- After rejecting a χ^2 omnibus test you do all pairwise comparisons
- You conducted a study with 20 outcomes and 30 different combinations of covariates. You consider significance at all combinations.
- You compare diseased tissue versus normal tissue expression levels for 20k genes
- You compare rest versus active at 300k voxels in an fMRI study

Multiplicity

 Performing two α-level tests: H₀¹ versus H_a¹ and H₀² versus H_a² E₁ Reject H₀¹ and E₂ Reject H₀²

Lecture 28

Multiplicity

FWE P(one or more false rej | H_0^1, H_0^2) = $P(E_1 \cup E_2 | H_0^1, H_0^2)$ = $P(E_1 | H_0^1, H_0^2) + P(E_2 | H_0^1, H_0^2)$ - $P(E_1 \cap E_2 | H_0^1, H_0^2)$ $\leq P(E_1 | H_0^1, H_0^2) + P(E_2 | H_0^1, H_0^2)$ = $2 \times \alpha$

Result : The familywise error rate for k hypotheses tested at level α is bounded by $k\alpha$

Proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Table of contents

Lecture 28

Outline

Multiplicity

Bonfero

E_i - false rejection for test i

All probabilities are conditional on all of the nulls being true

$$FWE = P(\text{one or more false rej})$$

$$= P(\bigcup_{i=1}^{k} E_i)$$

$$= P\left\{E_1 \cup (\bigcup_{i=2}^{k} E_i)\right\}$$

$$\leq P(E_1) + P(\bigcup_{i=2}^{k} E_i)$$

$$\vdots$$

$$\leq P(E_1) + P(E_2) + \ldots + P(E_k)$$

$$= k\alpha$$

Other direction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of contents

Lecture 28

Outline

Multiplicity

Bonferon

FDR

- The *FWE* is no larger than kα where k is the number of tests
- The FWE is no smaller than α

$$P(\cup_{i=1}^{k}E_i) \geq P(E_1) = \alpha$$

- The lower bound is obtained when the E_i are identical $E_1 = E_2 = \ldots = E_k$
- Bonferoni's tests each individual hypothesis at level $\alpha^* = \alpha/k$
 - The FWE is no larger than $k\alpha^* = k\alpha/k = \alpha$
 - The FWE is no smaller than α/k

Lecture 28

contents Outline Multiplicit Bonferoni

Bonferoni's procedure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If α^* is small and the tests are independent, then the upper bound on the FWE is nearly obtained

FWE = P(one or more false rej)= 1 - P(no false rej) = 1 - P(\begin{pmatrix} k = 1 - P(\begin{pmatrix} k = 1 - (1 - \alpha^*) \\ \alpha = 1 - (1 - k\alpha^*) \\ \end{pmatrix} = $k \alpha^* = \alpha$

Scratch work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Multiplicit Bonferoni

Lecture 28

FDR

Recall the approximation for α^* near 0

$$\frac{f(\alpha^*) - f(0)}{\alpha^* - 0} \approx f'(0)$$

hence

$$f(lpha^*)pprox f(0)+lpha^*f'(0)$$

In our case $f(lpha^*)=(1-lpha^*)^k$ so $f(0)=1$

$$f'(\alpha^*) = -k(1 - \alpha^*)^{k-1}$$
 so $f'(0) = -k$

Therefore $(1 - \alpha^*)^k \approx 1 - k\alpha^*$

Notes

 For Bonferoni's procedure α^{*} = α/k so will be close to 0 for a large number of tests

Lecture 28

Bonferoni

- When there are lots of tests that are (close to) independent, the upper bound on the *FWE* used is appropriate
- When the test are closely related, then the *FWE* will be closer to the lower bound, and Bonferoni's procedure is conservative
- Is the familywise error rate always the most appropriate quantity to control for?

FDR

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline Multiplic

Lecture 28

- Bonferc
- FDR

- The **false discovery rate** is the proportion of tests that are falsely declared significant
- Controlling the FDR is less conservative than controlling the FWE rate
- Introduced by Benjamini and Hochberg

Benjamini and Hochberg procedure

- **1** Order your k p-values, say $p_1 < p_2 < \ldots < p_k$
- **2** Define $q_i = kp_i/i$

Lecture 28

FDR

- **3** Define $F_i = min(q_i, \ldots, q_k)$
- **4** Reject for all *i* so that F_i is less than the desired FDR

Note that the F_i are increasing, so you only need to find the largest one so that $F_i < FDR$

Example

Lecture 28

Ingo Ruczinsk

Table of contents Outline

. . .

FDR

1st 10 of 50 SNPs (Rosner page 581)

Gene	i	pi	$q_i = k p_i / i$	Fi
30	1	<.0001	.0035	.0035
20	2	.011	.28	.16
48	3	.017	.28	.16
50	4	.017	.22	.16
4	5	.018	.18	.16
40	6	.019	.16	.16
7	7	.026	.18	.18
14	8	.034	.21	.21
26	9	.042	.23	.23
47	10	.048	.24	.24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

Outline Multiplici

Lecture 28

- Bonferoni
- FDR

- Bonferoni cutoff .05/50=.001; only the first Gene is significant
- For a FDR of 0 15%; only the first Gene would be declared significant
- For a FDR of 16 20%, the first 7 would be significant