Tests of hypotheses

- Confidence interval:
- Form an interval (on the basis of data) of plausible values for a population parameter.

Test of hypothesis:Answer a yes or no question regarding
a population parameter.

Examples:

- \longrightarrow Do the two strains have the same average response?
- \longrightarrow Is the concentration of substance X in the water supply above the safe limit?
 - \rightarrow Does the treatment have an effect?

Example

We have a quantitative assay for the concentration of antibodies against a certain virus in blood from a mouse.

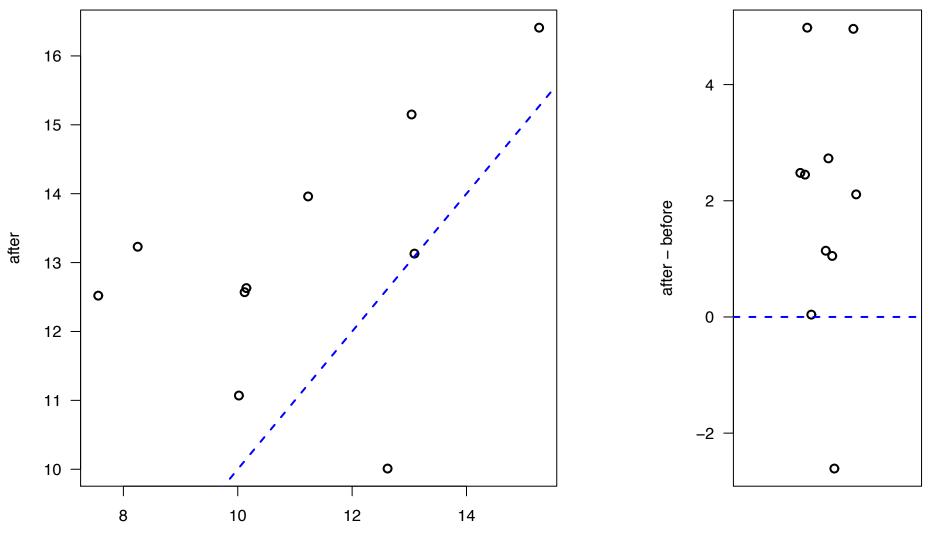
We apply our assay to a set of ten mice before and after the injection of a vaccine. (This is called a "paired" experiment.)

Let X_i denote the differences between the measurements ("after" minus "before") for mouse i.

We imagine that the X_i are independent and identically distributed Normal(μ , σ).

 \rightarrow Does the vaccine have an effect? In other words: Is $\mu \neq 0$?

The data



before

Hypothesis testing

We consider two hypotheses:

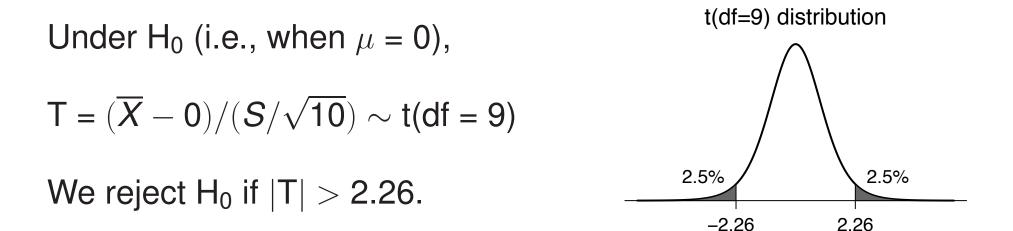
Null hypothesis, H₀: $\mu = 0$ Alternative hypothesis, H_a: $\mu \neq 0$

Type I error:Reject H_0 when it is true(false positive)Type II error:Fail to reject H_0 when it is false(false negative)

We set things up so that a Type I error is a worse error (and so that we are seeking to prove the alternative hypothesis). We want to control the rate (the significance level, α) of such errors.

- \longrightarrow Test statistic: $T = (\overline{X} 0)/(S/\sqrt{10})$
- → We reject H₀ if $|T| > t^*$, where t^{*} is chosen so that Pr(Reject H₀ | H₀ is true) = Pr($|T| > t^* | \mu = 0$) = α . (generally $\alpha = 5\%$)

Example (continued)



As a result, if H₀ is true, there's a 5% chance that you'll reject it!

For the observed data:

 $\bar{x} = 1.93$, s = 2.24, n = 10 T = (1.93 - 0) / (2.24/ $\sqrt{10}$) = 2.72

 \longrightarrow Thus we reject H₀.

- \longrightarrow We seek to prove the alternative hypothesis.
- \longrightarrow We are happy if we reject H₀.
- \longrightarrow In the case that we reject H₀, we might say: *Either H₀ is false, or a rare event occurred*.

Another example

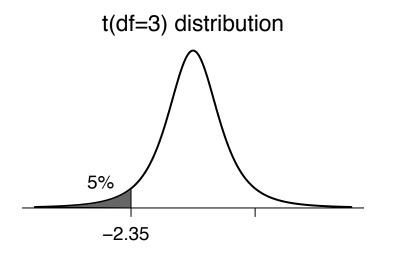
Question: is the concentration of substance X in the water supply above the safe level?

 $X_1, X_2, \ldots, X_4 \sim \text{iid Normal}(\mu, \sigma).$

 \longrightarrow We want to test H₀: $\mu \ge 6$ (unsafe) versus H_a: $\mu < 6$ (safe).

Test statistic:
$$T = \frac{\overline{X} - 6}{S/\sqrt{4}}$$

If we wish to have the significance level $\alpha = 5\%$, the rejection region is $T < t^* = -2.35$.



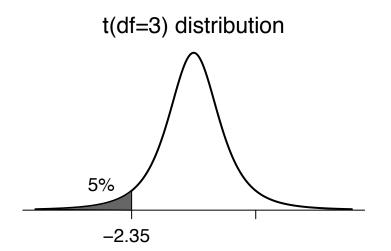
One-tailed vs two-tailed tests

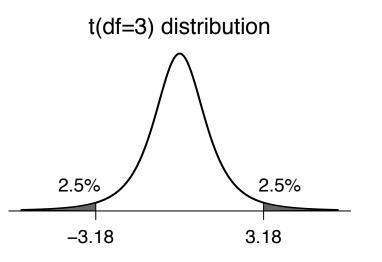
If you are trying to prove that a treatment improves things, you want a one-tailed (or one-sided) test.

You'll reject H_0 only if $T < t^*$.

If you are just looking for a difference, use a two-tailed (or two-sided) test.

You'll reject H_0 if $T < t^*$ or $T > t^*$.





P-values

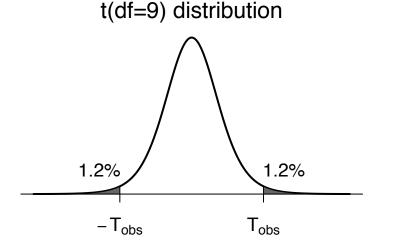
P-value: \longrightarrow the smallest significance level (α) for which you would fail to reject H₀ with the observed data.

 \longrightarrow the probability, if H₀ was true, of receiving data as extreme as what was observed.

$$X_1,\ldots,X_{10} \sim \text{iid Normal}(\mu,\sigma),$$

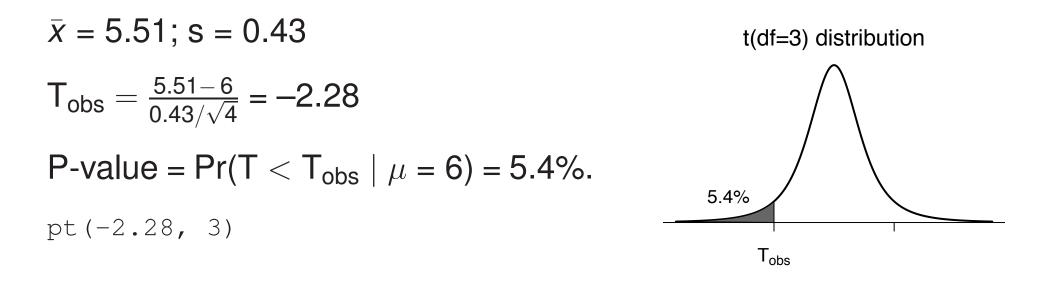
$$H_0: \mu = 0; H_a: \mu \neq 0.$$

 $\bar{x} = 1.93; s = 2.24$ $T_{obs} = \frac{1.93-0}{2.24/\sqrt{10}} = 2.72$ P-value = $Pr(|T| > T_{obs}) = 2.4\%$. 2*pt(-2.72,9)



Another example

$$X_1, \ldots, X_4 \sim \text{Normal}(\mu, \sigma)$$
 $H_0: \mu \ge 6; H_a: \mu < 6.$



 \longrightarrow The P-value quantifies how likely it is to get data as extreme as the data observed, assuming the null hypothesis was true.

Recall: We want to prove the alternative hypothesis (i.e., reject H₀, receive a small P-value)

Hypothesis tests and confidence intervals

 \rightarrow The 95% confidence interval for μ is the set of values, μ_0 , such that the null hypothesis H_0 : $\mu = \mu_0$ would not be rejected by a two-sided test with $\alpha = 5\%$.

The 95% CI for μ is the set of plausible values of μ . If a value of μ is plausible, then as a null hypothesis, it would not be rejected.

For example:

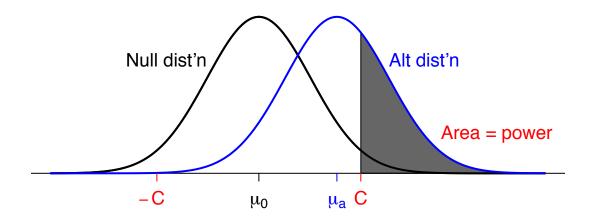
9.98 9.87 10.05 10.08 9.99 9.90 assumed to be iid Normal(μ,σ) $\bar{x} = 9.98$; s = 0.082; n = 6; qt(0.975,5) = 2.57

The 95% CI for μ is

 $9.98 \pm 2.57 \times 0.082 / \sqrt{6} = 9.98 \pm 0.086 = (9.89, 10.06)$

Power

The power of a test = $Pr(reject H_0 | H_0 is false)$.



The power depends on: • The null hypothesis and test statistic

- The sample size
- \bullet The true value of μ
- \bullet The true value of σ

Why "fail to reject"?

If the data are insufficient to reject H_0 , we say,

```
The data are insufficient to reject H_0.
```

We shouldn't say, We have proven H_0 .

- → We may only have low power to detect anything but extreme differences.
- → We control the rate of type I errors ("false positives") at 5% (or whatever), but we may have little or no control over the rate of type II errors.

The effect of sample size

Let X_1, \ldots, X_n be iid Normal (μ, σ) . We wish to test $H_0 : \mu = \mu_0$ vs $H_a : \mu \neq \mu_0$. Imagine $\mu = \mu_a$.

