Testing the difference between two means

Strain A: $X_1, \ldots, X_n \sim \text{iid Normal}(\mu_A, \sigma_A)$ Strain B: $Y_1, \ldots, Y_m \sim \text{iid Normal}(\mu_B, \sigma_B)$

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$

If H₀ is true, then T follows (approximately) a t distr'n with k d.f. k according to the nasty formula from a previous lecture.

Example

Strain A: n = 12, sample mean = 103.7, sample SD = 7.2 Strain B: n = 9, sample mean = 97.0, sample SD = 4.5

$$\widehat{SD}(\overline{X} - \overline{Y}) = \sqrt{\frac{7.2^2}{12} + \frac{4.5^2}{9}} = 1.80$$

T = (103.7 - 97.0)/1.80 = 2.60.

k = ... = 18.48, so C = 2.10. Thus we reject H₀ at $\alpha = 0.05$.

What to say

When rejecting H₀:

- The difference is statistically significant.
- The observed difference can not reasonably be explained by chance variation.

When failing to reject H_0 :

- There is insufficient evidence to conclude that $\mu_{A} \neq \mu_{B}$.
- The difference is not statistically significant.
- The observed difference could reasonably be the result of chance variation.

What about a different significance level?

Recall T = 2.60 k = 18.48

- If $\alpha = 0.10$, $C = 1.73 \implies \text{Reject H}_0$
- If $\alpha = 0.05$, C = 2.10 \implies Reject H₀
- If $\alpha = 0.01$, $C = 2.87 \implies$ Fail to reject H₀
- If $\alpha = 0.001$, C = 3.90 \implies Fail to reject H₀

P-value: the smallest α for which you would still reject H₀ with the observed data.

With these data, P = 2 * (1 - pt (2.60, 18.48)) = 0.018.

Another example

Suppose I measure the blood pressure of 6 mice on a low salt diet and 6 mice on a high salt diet. We wish to prove that the high salt diet causes an increase in blood pressure.

We imagine $X_1, \ldots, X_n \sim \text{iid Normal}(\mu_L, \sigma_L)$ low salt $Y_1, \ldots, Y_m \sim \text{iid Normal}(\mu_H, \sigma_H)$ high salt

We want to test $H_0: \mu_L = \mu_H$ versus $H_a: \mu_L < \mu_H$

 \longrightarrow Are the data compatible with H₀?

A one-tailed test

Test statistic: T =
$$\frac{\overline{X} - \overline{Y}}{\widehat{SD}(\overline{X} - \overline{Y})}$$

Since we seek to prove that μ_L is smaller than μ_H , only large negative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr(T < C | $\mu_L = \mu_H$) = α .

The example

Low salt: n = 6; sample mean = 51.0, sample SD = 10.0 High salt: n = 6; sample mean = 69.1, sample SD = 15.1

 $\bar{x} - \bar{y} = -18.1$ $\widehat{SD}(\bar{X} - \bar{Y}) = 7.40$ T = -18.1 / 7.40 = -2.44

k = 8.69. If α = 0.05, then C = -1.84. Since T < C, we reject H₀ and conclude that $\mu_L < \mu_H$. Note: P-value = pt (-2.44, 8.69) = 0.019.

Always give a confidence interval!

 \rightarrow Make a statistician happy: draw a picture of the data.

Example

Suppose I do some pre/post measurements.

I make some measurement on each of 5 mice before and after some treatment.

Question: Does the treatment have any effect?

Mouse	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0

Pre/post example

In this sort of pre/post measurement example, study the differences as a single sample.

Why? The pre/post measurements are likely associated, and as a result one can more precisely learn about the effect of the treatment.

Mouse	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0
Difference	-0.8	9.8	10.5	9.3	16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = ... = (1.4, 16.5) P-value for test of $\mu_{\text{before}} = \mu_{\text{after}}$: 0.03.

Summary

- \bullet Tests of hypotheses \rightarrow answering yes/no questions regarding population parameters.
- There are two kinds of errors:

Type I: Reject H₀ when it is true.
Type II: Fail to reject H₀ when it is false.

- We seek to reject the null hypothesis.
- If we fail to reject H_0 , we do not "accept H_0 ".
- $\label{eq:probability} \bullet \mbox{P-value} \to \mbox{the probability, if H_0 is true, of obtaining data as extreme as was observed. $$ Pr(data | no effect) rather than $$ Pr(no effect | data). $$$
- \bullet Power \rightarrow the probability of rejecting H_0 when it is false.

Was the result important?

- Statistically significant is not the same as important.
- A difference is "statistically significant" if it cannot reasonably be ascribed to chance variation.
- With lots of data, small (and unimportant) differences can be statistically significant.
- With very little data, quite important differences will fail to be significant.
- Always look at the confidence interval as well as the P-value.

Does the difference prove the point?

- A test of significance does not check the design of the study.
- With observational studies or poorly controlled experiments, the proof of statistical significance may not prove what you want.
- Example: consider the tick/deer leg experiment. It may be that ticks are not attracted to deer-gland-substance but rather despise the scent of latex gloves and deer-gland-substance masks it.
- Example: In a study of gene expression, if cancer tissue samples were always processed first, while normal tissue samples were kept on ice, the observed differences might not have to do with normal/cancer as with iced/not iced.
- Don't forget the science in the cloud of data and statistics.