
Testing the difference between two means

Strain A: X 1, . . . ,X n ∼ iid Normal(µA, σA)

Strain B: Y 1, . . . ,Y m ∼ iid Normal(µB, σB)

Test H0 : µA = µB vs Ha : µA ̸= µB

Test statistic: T =
X − Y√
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Reject H0 if |T| > tα/2 tα 2− tα 2  

2.5% 2.5%

If H0 is true, then T follows (approximately) a t distr’n with k d.f.

k according to the nasty formula from a previous lecture.



Example
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Strain A: n = 12, sample mean = 103.7, sample SD = 7.2

Strain B: n = 9, sample mean = 97.0, sample SD = 4.5

ŜD(X − Y ) =
√

7.22

12 + 4.52

9 = 1.80

T = (103.7 – 97.0)/1.80 = 2.60.

k = . . . = 18.48, so C = 2.10. Thus we reject H0 at α = 0.05.



What to say

When rejecting H0:

• The difference is statistically significant.

• The observed difference can not reasonably be explained by
chance variation.

When failing to reject H0:

• There is insufficient evidence to conclude that µA ̸= µB.

• The difference is not statistically significant.

• The observed difference could reasonably be the result of
chance variation.



What about a different significance level?

Recall T = 2.60 k = 18.48

If α = 0.10, C = 1.73 =⇒ Reject H0

If α = 0.05, C = 2.10 =⇒ Reject H0

If α = 0.01, C = 2.87 =⇒ Fail to reject H0

If α = 0.001, C = 3.90 =⇒ Fail to reject H0

P-value: the smallest α for which you would still reject H0 with the
observed data.

With these data, P = 2*(1-pt(2.60,18.48)) = 0.018.



Another example

Suppose I measure the blood pressure of 6 mice on a low salt diet
and 6 mice on a high salt diet. We wish to prove that the high salt
diet causes an increase in blood pressure.
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We imagine X 1, . . . ,X n ∼ iid Normal(µL,σL) low salt

Y 1, . . . ,Y m ∼ iid Normal(µH,σH) high salt

We want to test H0 : µL = µH versus Ha : µL < µH

−→ Are the data compatible with H0?



A one-tailed test

Test statistic: T =
X − Y

ŜD(X − Y )

Since we seek to prove that µL is smaller than µH, only large neg-
ative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr( T < C | µL = µH ) = α.
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The example
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Low salt: n = 6; sample mean = 51.0, sample SD = 10.0

High salt: n = 6; sample mean = 69.1, sample SD = 15.1

x̄ − ȳ = –18.1 ŜD(X − Y ) = 7.40 T = –18.1 / 7.40 = –2.44

k = 8.69. If α = 0.05, then C = –1.84.

Since T < C, we reject H0 and conclude that µL < µH.

Note: P-value = pt(-2.44, 8.69) = 0.019.



Always give a confidence interval!
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P = 0.019

95% CI: (–34.9, –1.2)
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P = 0.019

95% CI: (–13.6, –0.5)

−→ Make a statistician happy: draw a picture of the data.



Example

Suppose I do some pre/post measurements.

I make some measurement on each of 5 mice before and after
some treatment.

Question: Does the treatment have any effect?

Mouse 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0
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Pre/post example

In this sort of pre/post measurement example, study the differ-
ences as a single sample.

Why? The pre/post measurements are likely associated, and as
a result one can more precisely learn about the effect of
the treatment.

Mouse 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0

Difference –0.8 9.8 10.5 9.3 16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = . . . = (1.4, 16.5)

P-value for test of µbefore = µafter : 0.03.



Summary

• Tests of hypotheses → answering yes/no questions regarding
population parameters.

• There are two kinds of errors:

◦ Type I: Reject H0 when it is true.

◦ Type II: Fail to reject H0 when it is false.

• We seek to reject the null hypothesis.

• If we fail to reject H0, we do not “accept H0”.

• P-value → the probability, if H0 is true, of obtaining data as ex-
treme as was observed. Pr( data | no effect ) rather than Pr( no effect | data ).

• Power → the probability of rejecting H0 when it is false.



Was the result important?

• Statistically significant is not the same as important.

• A difference is “statistically significant” if it cannot reasonably
be ascribed to chance variation.

• With lots of data, small (and unimportant) differences can be
statistically significant.

• With very little data, quite important differences will fail to be
significant.

• Always look at the confidence interval as well as the P-value.



Does the difference prove the point?

• A test of significance does not check the design of the study.

• With observational studies or poorly controlled experiments, the
proof of statistical significance may not prove what you want.

• Example: consider the tick/deer leg experiment. It may be
that ticks are not attracted to deer-gland-substance but rather
despise the scent of latex gloves and deer-gland-substance
masks it.

• Example: In a study of gene expression, if cancer tissue sam-
ples were always processed first, while normal tissue samples
were kept on ice, the observed differences might not have to do
with normal/cancer as with iced/not iced.

• Don’t forget the science in the cloud of data and statistics.


