
Goodness of fit - 2 classes

A B
78 22

−→ Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing pA = 0.75!

• Exact p-value

• Exact confidence interval

• Normal approximation



Goodness of fit - 3 classes

AA AB BB
35 43 22

−→ Do these data correspond reasonably to the proportions 1:2:1?



Multinomial distribution

• Imagine an urn with k types of balls.

• Let pi denote the proportion of type i.

• Draw n balls with replacement.

• Outcome: (n1, n2, . . . , nk), with
∑

i ni = n, where ni is the no.
balls drawn that were of type i.

−→ P(X 1=n1, . . . ,X k=nk) = n!
n1! × · · ·× nk!

pn1
1 × · · ·× pnk

k

if 0 ≤ ni ≤ n,
∑

i ni = n

Otherwise P(X 1=n1, . . . ,X k=nk) = 0.



Example

Let (p1, p2, p3) = (0.25, 0.50, 0.25) and n = 100.

P(X 1=35,X 2=43,X 3=22) = 100!
35! 43! 22! 0.2535 0.5043 0.2522

≈ 7.3 × 10-4

Rather brutal, numerically speaking.

−→ Take logs (and use a computer).



Goodness of fit test

We observe (n1, n2, n3) ∼ Multinomial(n,p={p1, p2, p3}).

We seek to test H0 : p1 = 0.25, p2 = 0.5, p3 = 0.25.
versus Ha : H0 is false.

We need two things:

−→ A test statistic.

−→ The null distribution of the test statistic.



The likelihood-ratio test (LRT)

Back to the first example:
A B
nA nB

Test H0 : (pA, pB) = (πA, πB) versus Ha : (pA, pB) ̸= (πA, πB).

−→ MLE under Ha: p̂A = nA/n where n = nA + nB.

Likelihood under Ha: La = Pr(nA|pA = p̂A) =
( n

nA

)

× p̂nA
A × (1− p̂A)

n−nA

Likelihood under H0: L0 = Pr(nA|pA = πA) =
( n

nA

)

× πnA
A × (1− πA)n−nA

−→ Likelihood ratio test statistic: LRT = 2 × ln (La/L0)

−→ Some clever people have shown that if H0 is true, then LRT
follows a χ2(df=1) distribution (approximately).



Likelihood-ratio test for the example

We observed nA = 78 and nB = 22.

H0 : (pA, pB) = (0.75,0.25)
Ha : (pA, pB) ̸= (0.75,0.25)

La = Pr(nA=78 | pA=0.78) =
(100

78
)

× 0.7878 × 0.2222 = 0.096.

L0 = Pr(nA=78 | pA=0.75) =
(100

78
)

× 0.7578 × 0.2522 = 0.075.

−→ LRT = 2 × ln (La/L0) = 0.49.

Using a χ2(df=1) distribution, we get a p-value of 0.48.
We therefore have no evidence against the null hypothesis.

In R: p-value = 1 - pchisq(0.49,1)



Null distribution
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A little math . . .

n = nA + nB, n0
A = E[nA | H0] = n × πA, n0

B = E[nB | H0] = n × πB.

Then La/L0 =
(

nA
n0

A

)nA
×
(

nB
n0

B

)nB

Or equivalently LRT = 2×nA×ln
(

nA
n0

A

)

+ 2×nB×ln
(

nB
n0

B

)

.

−→ Why do this?



Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT = 2×
∑k

i=1 ni× ln
(

ni
n0

i

)

If H0 is true, LRT ∼ χ2(df=k-1)



Null distributions

3 groups:   χ2 (df=2)
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Example

In a dihybrid cross of tomatos we expect the ratio of the pheno-
types to be 9:3:3:1. In 1611 tomatos, we observe the numbers
926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype ni n0
i ni/n0

i ni×ln
(

ni/n0
i

)

Tall, cut-leaf 926 906.2 1.02 20.03
Tall, potato-leaf 288 302.1 0.95 -13.73
Dwarf, cut-leaf 293 302.1 0.97 -8.93
Dwarf, potato-leaf 104 100.7 1.03 3.37
Sum 1611 0.74



Results
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The test statistics LRT is 1.48. Using a χ2(df=3) distribution, we
get a p-value of 0.69. We therefore have no evidence against the
hypothesis that the ratio of the phenotypes is 9:3:3:1.



The chi-square test

There is an alternative technique. The test is called the chi-square
test, and has the greater tradition in the literature. For two groups,
calculate the following:

X 2 = (nA−n0
A)

2

n0
A

+ (nB−n0
B)

2

n0
B

−→ If H0 is true, then X 2 is a draw from a χ2(df=1) distribution
(approximately).



Example

In the first example we observed nA = 78 and nB = 22. Under the
null hypothesis we have n0

A = 75 and n0
B = 25. We therefore get

X 2 = (78-75)2

75 + (22-25)2

25 = 0.12 + 0.36 = 0.48.

This corresponds to a p-value of 0.49. We therefore have no evi-
dence against the hypothesis (pA, pB) = (0.75,0.25).

−→ Note: using the likelihood ratio test we got a p-value of 0.48.

In R: chisq.test(c(78,22),p=c(0.75,0.25))



Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more
than just two groups.

If we have k groups, the chi-square test statistic we use is

X 2 = ∑k
i=1

(ni−n0
i )

2

n0
i

∼ χ2(df=k-1)



Tomato example

For the tomato example we get

X 2 =
(926-906.2)2

906.2 +
(288-302.1)2

302.1 +
(293-302.1)2

302.1 +
(104-100.7)2

100.7

= 0.43 + 0.65 + 0.27 + 0.11 = 1.47

Using a χ2(df=3) distribution, we get a p-value of 0.69. We there-
fore have no evidence against the hypothesis that the ratio of the
phenotypes is 9:3:3:1.

−→ Using the likelihood ratio test we also got a p-value of 0.69.

In R: chisq.test(c(926,288,293,104),p=c(9,3,3,1)/16)



Test statistics

Let n0
i denote the expected count in group i if H0 is true.

LRT statistic

LRT = 2 ln
{

Pr(data | p = MLE)
Pr(data | H0)

}

= . . . = 2
∑

i ni ln(ni/n0
i )

χ2 test statistic

X2 =
∑ (observed − expected)2

expected =
∑

i

(ni − n0
i )

2

n0
i



Null distribution of test statistic

What values of LRT (or X2) should we expect, if H0 were true?

The null distributions of these statistics may be obtained by:

• Brute-force analytic calculations

• Computer simulations

• Asymptotic approximations
−→ If the sample size n is large, we have

LRT ∼ χ2(k − 1) and X2 ∼ χ2(k − 1)



The brute-force method

Pr(LRT = g | H0) =
∑

n1,n2,n3
giving LRT = g

Pr(n1, n2, n3 | H0)

This is not feasible.



Computer simulation

1. Simulate a table conforming to the null hypothesis.
E.g., simulate (n1, n2, n3) ∼ Multinomial(n=100, {1/4, 1/2, 1/4})

2. Calculate your test statistic.

3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value → the 95th percentile of the results.

Estimated P-value → the prop’n of results ≥ the observed value.

In R, use rmultinom(n, size, prob) to do n simulations of a Multinomial(size, prob).



Example

We observe the following data:
AA AB BB
35 43 22

We imagine that these are counts
(n1, n2, n3) ∼ Multinomial(n=100,{p1, p2, p3}).

We seek to test H0 : p1 = 1/4, p2 = 1/2, p3 = 1/4.

We calculate LRT ≈ 4.96 and X2 ≈ 5.34.

Referring to the asymptotic approximations (χ2 dist’n with 2 de-
grees of freedom), we obtain P ≈ 8.4% and P ≈ 6.9%.

With 10,000 simulations under H0, we get P ≈ 8.9% and P ≈ 7.4%.



Example

Est’d null dist’n of LRT statistic

LRT

0 5 10 15

Observed 95th %ile = 6.06

Est’d null dist’n of chi−square statistic

X2

0 5 10 15

Observed 95th %ile = 6.00



Summary and recommendation

For either the LRT or the χ2 test:

−→ The null distribution is approximately χ2(k − 1) if the sample
size is large.

−→ The null distribution can be approximated by simulating data
under the null hypothesis.

If the sample size is sufficiently large that the expected count in
each cell is ≥ 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.



Composite hypotheses

Sometimes, we ask not pAA = 0.25, pAB = 0.5, pBB = 0.25

But rather something like:
pAA = f2, pAB = 2f(1 − f), pBB = (1 − f)2 for some f.

For example: Consider the genotypes, of a random sample of in-
dividuals, at a diallelic locus.

−→ Is the locus in Hardy-Weinberg equilibrium (as expected
in the case of random mating)?

Example data:
AA AB BB
5 20 75



Another example

ABO blood groups −→ 3 alleles A, B, O.

Phenotype A genotype AA or AO
B genotype BB or BO

AB genotype AB
O genotype O

Allele frequencies: fA, fB, fO (Note that fA + fB + fO = 1)

Under Hardy-Weinberg equilibrium, we expect

pA = f2A + 2fAfO pB = f2B + 2fBfO pAB = 2fAfB pO = f2O

Example data: O A B AB
104 91 36 19



LRT for example 1

Data: (nAA, nAB, nBB) ∼ Multinomial(n,{pAA, pAB, pBB})

We seek to test whether the data conform reasonably to
H0: pAA = f2, pAB = 2f(1 − f), pBB = (1 − f)2 for some f.

General MLEs:
p̂AA = nAA/n, p̂AB = nAB/n, p̂BB = nBB/n

MLE under H0:
f̂ = (nAA + nAB/2)/n −→ p̃AA = f̂

2
, p̃AB = 2 f̂ (1 − f̂), p̃BB = (1 − f̂)2

LRT statistic: LRT = 2 × ln
{

Pr(nAA, nAB, nBB | p̂AA, p̂AB, p̂BB)

Pr(nAA, nAB, nBB | p̃AA, p̃AB, p̃BB)

}



LRT for example 2

Data: (nO, nA, nB, nAB) ∼ Multinomial(n,{pO, pA, pB, pAB})

We seek to test whether the data conform reasonably to
H0: pA = f2A + 2fAfO, pB = f2B + 2fBfO, pAB = 2fAfB, pO = f2O
for some fO, fA, fB, where fO + fA + fB = 1.

General MLEs: p̂O, p̂A, p̂B, p̂AB, like before.

MLE under H0: Requires numerical optimization
Call them (̂fO, f̂A, f̂B) −→ (p̃O, p̃A, p̃B, p̃AB)

LRT statistic: LRT = 2 × ln
{

Pr(nO, nA, nB, nAB | p̂O, p̂A, p̂B, p̂AB)

Pr(nO, nA, nB, nAB | p̃O, p̃A, p̃B, p̃AB)

}



χ2 test for these examples

• Obtain the MLE(s) under H0.

• Calculate the corresponding cell probabilities.

• Turn these into (estimated) expected counts under H0.

• Calculate X2 =
∑ (observed − expected)2

expected



Null distribution for these cases

• Computer simulation (with one wrinkle)

◦ Simulate data under H0 (plug in the MLEs for the observed data)

◦ Calculate the MLE with the simulated data
◦ Calculate the test statistic with the simulated data
◦ Repeat many times

• Asymptotic approximation
◦ Under H0, if the sample size, n, is large, both the LRT statis-

tic and the χ2 statistic follow, approximately, a χ2 distribution
with k – s – 1 degrees of freedom, where s is the number of
parameters estimated under H0.

◦ Note that s = 1 for example 1, and s = 2 for example 2, and
so df = 1 for both examples.



Example 1

Example data: AA AB BB
5 20 75

MLE: f̂ = (5 + 20/2) / 100 = 15%

Expected counts: 2.25 25.5 72.25

Test statistics: LRT statistic = 3.87 X2 = 4.65

Asymptotic χ2(df = 1) approx’n: P ≈ 4.9% P ≈ 3.1%

10,000 computer simulations: P ≈ 8.2% P ≈ 2.4%



Example 1

Est’d null dist’n of LRT statistic

LRT

0 2 4 6 8

Observed
95th %ile = 4.58

Est’d null dist’n of chi−square statistic

X2

0 2 4 6 8

Observed
95th %ile = 3.36



Example 2

Example data: O A B AB
104 91 36 19

MLE: f̂O ≈ 62.8%, f̂A ≈ 25.0%, f̂B ≈ 12.2%.

Expected counts: 98.5 94.2 42.0 15.3

Test statistics: LRT statistic = 1.99 X2 = 2.10

Asymptotic χ2(df = 1) approx’n: P ≈ 16% P ≈ 15%

10,000 computer simulations: P ≈ 17% P ≈ 15%



Example 2

Est’d null dist’n of LRT statistic

LRT

0 2 4 6 8

Observed
95th %ile = 3.91

Est’d null dist’n of chi−square statistic

X2

0 2 4 6 8

Observed
95th %ile = 3.86



Example 3

Data on number of sperm bound to an egg:

0 1 2 3 4 5
count 26 4 4 2 1 1

−→ Do these follow a Poisson distribution?

MLE:
λ̂ = sample average = ( 0 × 26 + 1 × 4 + . . . + 5 × 1 ) / 38 ≈ 0.71

Expected counts −→ n0
i = n × e−λ̂ λ̂i / i!



Example 3

0 1 2 3 4 5
observed 26 4 4 2 1 1
expected 18.7 13.3 4.7 1.1 0.2 0.0

X2 =
∑ (obs−exp)2

exp = . . . = 42.8

LRT = 2
∑

obs log(obs/exp) = . . . = 18.8

Compare to χ2(df = 6 – 1 – 1 = 4)

P-value = 1 × 10−8 (χ2) and 9 × 10−4 (LRT).

By simulation: p-value = 16/10,000 (χ2) and 7/10,000 (LRT)



Null simulation results

Simulated χ2 statistic

0 20 40 60 80 100 120

Observed

Simulated LRT statistic

0 5 10 15 20

Observed



A final note

With these sorts of goodness-of-fit tests, we are often happy when
our model does fit.

In other words, we often prefer to fail to reject H0.

Such a conclusion, that the data fit the model reasonably well,
should be phrased and considered with caution.

We should think: how much power do I have to detect, with these
limited data, a reasonable deviation from H0?



2 x 2 tables

Apply a treatment to 20 mice
from strains A and B, and ob-
serve survival.

N Y
A 18 2 20
B 11 9 20

29 11 40

Question:
−→ Are the survival rates

in the two strains the
same?

Gather 100 rats and deter-
mine whether they are in-
fected with viruses A and B.

I-B NI-B
I-A 9 9 18

NI-A 20 62 82
29 71 100

Question:
−→ Is infection with virus A

independent of infection
with virus B?



Underlying probabilities

−→ Observed data
B

0 1
A 0 n00 n01 n0+

1 n10 n11 n1+
n+0 n+1 n

−→ Underlying probabilities

B
0 1

A 0 p00 p01 p0+
1 p10 p11 p1+

p+0 p+1 1

Model:

(n00, n01, n10, n11) ∼ Multinomial(n,{p00, p01, p10, p11})
or

n01 ∼ Binomial(n0+, p01/p0+) and n11 ∼ Binomial(n1+, p11/p1+)



Conditional probabilities

Underlying probabilities

B
0 1

A 0 p00 p01 p0+
1 p10 p11 p1+

p+0 p+1 1

Conditional probabilities

Pr(B = 1 | A = 0) = p01/p0+

Pr(B = 1 | A = 1) = p11/p1+

Pr(A = 1 | B = 0) = p10/p+0

Pr(A = 1 | B = 1) = p11/p+1

−→ The questions in the two examples are the same!

They both concern: p01/p0+ = p11/p1+

Equivalently: pij = pi+ × p+j for all i,j −→ think Pr(A and B) = Pr(A) × Pr(B).



This is a composite hypothesis!

2 x 2 table

B
0 1

A 0 p00 p01 p0+
1 p10 p11 p1+

p+0 p+1 1

H0: pij = pi+ × p+j for all i,j

A different view

p00 p01 p10 p11

H0: pij = pi+ × p+j for all i,j

Degrees of freedom = 4 - 2 - 1 = 1



Expected counts

Observed data
B

0 1
A 0 n00 n01 n0+

1 n10 n11 n1+
n+0 n+1 n

Expected counts

B
0 1

A 0 e00 e01 n0+
1 e10 e11 n1+

n+0 n+1 n

To get the expected counts under the null hypothesis we:
−→ Estimate p1+ and p+1 by n1+/n and n+1/n, respectively.

These are the MLEs under H0!

−→ Turn these into estimates of the pij.
−→ Multiply these by the total sample size, n.



The expected counts

The expected count (assuming H0) for the “11” cell is the following:

e11 = n× p̂11
= n× p̂1+ × p̂+1
= n× (n1+/n)× (n+1/n)

= (n1+ × n+1)/n

The other cells are similar.

−→ We can then calculate a χ2 or LRT statistic as before!



Example 1

Observed data

N Y
A 18 2 20
B 11 9 20

29 11 40

Expected counts

N Y
A 14.5 5.5 20
B 14.5 5.5 20

29 11 40

X2 = (18−14.5)2
14.5 + (11−14.5)2

14.5 + (2−5.5)2
5.5 + (9−5.5)2

5.5 = 6.14

LRT = 2× [18 log( 18
14.5) + . . . + 9 log( 9

5.5)] = 6.52

P-values (based on the asymptotic χ2(df = 1) approximation):
1.3% and 1.1%, respectively.



Example 2

Observed data

I-B NI-B
I-A 9 9 18

NI-A 20 62 82
29 71 100

Expected counts

I-B NI-B
I-A 5.2 12.8 18

NI-A 23.8 58.2 82
29 71 100

X2 = (9−5.2)2
5.2 + (20−23.8)2

23.8 + (9−12.8)2
12.8 + (62−58.2)2

58.2 = 4.70

LRT = 2× [9 log( 9
5.2) + . . . + 62 log( 62

58.2)] = 4.37

P-values (based on the asymptotic χ2(df = 1) approximation):
3.0% and 3.7%, respectively.



r x k tables

Blood type
Population A B AB O
Florida 122 117 19 244 502
Iowa 1781 1351 289 3301 6721
Missouri 353 269 60 713 1395

2256 1737 367 4258 8618

−→ Same distribution of blood types in each population?



Underlying probabilities

Observed data

1 2 · · · k
1 n11 n12 · · · n1k n1+
2 n21 n22 · · · n2k n2+
... ... ... . . . ... ...
r nr1 nr2 · · · nrk nr+
n+1 n+2 · · · n+k n

Underlying probabilities

1 2 · · · k
1 p11 p12 · · · p1k p1+
2 p21 p22 · · · p2k p2+
... ... ... . . . ... ...
r pr1 pr2 · · · prk pr+
p+1 p+2 · · · p+k 1

H0: pij = pi+ × p+j for all i,j.



Expected counts

Observed data

A B AB O
F 122 117 19 244 502
I 1781 1351 289 3301 6721
M 353 269 60 713 1395

2256 1737 367 4258 8618

Expected counts

A B AB O
F 131 101 21 248 502
I 1759 1355 286 3321 6721
M 365 281 59 689 1395

2256 1737 367 4258 8618

Expected counts under H0: eij = ni+ × n+j/n for all i,j.



χ2 and LRT statistics

Observed data

A B AB O
F 122 117 19 244 502
I 1781 1351 289 3301 6721
M 353 269 60 713 1395

2256 1737 367 4258 8618

Expected counts

A B AB O
F 131 101 21 248 502
I 1759 1355 286 3321 6721
M 365 281 59 689 1395

2256 1737 367 4258 8618

X2 statistic =
∑ (obs−exp)2

exp = · · · = 5.64

LRT statistic = 2 ×
∑

obs ln(obs/exp) = · · · = 5.55



Asymptotic approximation

If the sample size is large, the null distribution of the χ2 and likeli-
hood ratio test statistics will approximately follow a

χ2 distribution with (r – 1) × (k – 1) d.f.

In the example, df = (3 – 1) × (4 – 1) = 6

X2 = 5.64 −→ P = 0.46.

LRT = 5.55 −→ P = 0.48.



Two-locus linkage in an intercross

BB Bb bb
AA 6 15 3
Aa 9 29 6
aa 3 16 13

Are these two loci linked?



General test of independence

Observed data
BB Bb bb

AA 6 15 3
Aa 9 29 6
aa 3 16 13

Expected counts

BB Bb bb
AA 4.3 14.4 5.3
Aa 7.9 26.4 9.7
aa 5.8 19.2 7.0

χ2 test: X2 = 10.4 −→ P = 3.5% (df = 4)

LRT test: LRT = 9.98 −→ P = 4.1%

Fisher’s exact test: P = 4.6%



A more specific test

Observed data
BB Bb bb

AA 6 15 3
Aa 9 29 6
aa 3 16 13

Underlying probabilities

BB Bb bb
AA 1

4(1− θ)2 1
2θ(1− θ) 1

4θ
2

Aa 1
2θ(1− θ) 1

2[θ
2 + (1− θ)2] 1

2θ(1− θ)

aa 1
4θ

2 1
2θ(1− θ) 1

4(1− θ)2

H0: θ = 1/2 versus Ha: θ < 1/2

Use a likelihood ratio test!

−→ Obtain the general MLE of θ.
−→ Calculate the LRT statistic = 2 ln

{

Pr(data | θ̂)
Pr(data | θ=1/2)

}

−→ Compare this statistic to a χ2(df = 1).



Results

BB Bb bb
AA 6 15 3
Aa 9 29 6
aa 3 16 13

MLE: θ̂ = 0.359

LRT statistic: LRT = 7.74 −→ P = 0.54% (df = 1)

−→ Here we assume Mendelian segregation, and that deviation
from H0 is “in a particular direction.”

−→ If these assumptions are correct, we’ll have greater power to
detect linkage using this more specific approach.
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