Goodness of fit - 2 classes

А	В
78	22

 \longrightarrow Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing $p_A = 0.75!$

- Exact p-value
- Exact confidence interval
- Normal approximation

Goodness of fit - 3 classes

AA	AB	BB
35	43	22

 \longrightarrow Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

- Imagine an urn with k types of balls.
- Let p_i denote the proportion of type i.
- Draw n balls with replacement.
- Outcome: $(n_1, n_2, ..., n_k)$, with $\sum_i n_i = n$, where n_i is the no. balls drawn that were of type i.

$$\rightarrow P(X_1=n_1,\ldots,X_k=n_k) = \frac{n!}{n_1!\times\cdots\times n_k!} p_1^{n_1}\times\cdots\times p_k^{n_k}$$

if $0 \le n_i \le n$, $\sum_i n_i = n$

Otherwise
$$P(X_1=n_1,...,X_k=n_k) = 0.$$

Let $(p_1, p_2, p_3) = (0.25, 0.50, 0.25)$ and n = 100.

$$P(X_1=35, X_2=43, X_3=22) = \frac{100!}{35! \ 43! \ 22!} \ 0.25^{35} \ 0.50^{43} \ 0.25^{22}$$
$$\approx 7.3 \times 10^{-4}$$

Rather brutal, numerically speaking.

Goodness of fit test

We observe $(n_1, n_2, n_3) \sim Multinomial(n, p=\{p_1, p_2, p_3\})$.

We seek to test H_0 : $p_1 = 0.25$, $p_2 = 0.5$, $p_3 = 0.25$. versus H_a : H_0 is false.

We need two things:

 \longrightarrow A test statistic.

 \longrightarrow The null distribution of the test statistic.

The likelihood-ratio test (LRT)

Test $H_0 : (p_A, p_B) = (\pi_A, \pi_B)$ versus $H_a : (p_A, p_B) \neq (\pi_A, \pi_B)$. \longrightarrow MLE under H_a : $\hat{p}_A = n_A/n$ where $n = n_A + n_B$. Likelihood under H_a : $L_a = Pr(n_A | p_A = \hat{p}_A) = \binom{n}{n_A} \times \hat{p}_A^{n_A} \times (1 - \hat{p}_A)^{n-n_A}$ Likelihood under H_0 : $L_0 = Pr(n_A | p_A = \pi_A) = \binom{n}{n_A} \times \pi_A^{n_A} \times (1 - \pi_A)^{n-n_A}$

- \longrightarrow Likelihood ratio test statistic: LRT = 2 \times ln (L_a/L₀)
- \rightarrow Some clever people have shown that if H₀ is true, then LRT follows a χ^2 (df=1) distribution (approximately).

Likelihood-ratio test for the example

We observed $n_A = 78$ and $n_B = 22$.

$$\begin{split} &\mathsf{H}_{0}:(\mathsf{p}_{\mathsf{A}},\mathsf{p}_{\mathsf{B}})=\textbf{(0.75,0.25)}\\ &\mathsf{H}_{\mathsf{a}}:(\mathsf{p}_{\mathsf{A}},\mathsf{p}_{\mathsf{B}})\neq\textbf{(0.75,0.25)} \end{split}$$

 $\begin{array}{l} \mathsf{L}_{a} = \mathsf{Pr}(\mathsf{n}_{\mathsf{A}} = 78 \mid \mathsf{p}_{\mathsf{A}} = 0.78) = \binom{100}{78} \times 0.78^{78} \times 0.22^{22} = 0.096. \\ \mathsf{L}_{0} = \mathsf{Pr}(\mathsf{n}_{\mathsf{A}} = 78 \mid \mathsf{p}_{\mathsf{A}} = 0.75) = \binom{100}{78} \times 0.75^{78} \times 0.25^{22} = 0.075. \\ \longrightarrow \quad \mathsf{LRT} = 2 \times \mathsf{ln} \ (\mathsf{L}_{a}/\mathsf{L}_{0}) = 0.49. \end{array}$

Using a χ^2 (df=1) distribution, we get a p-value of 0.48. We therefore have no evidence against the null hypothesis.

In R: p-value = 1 - pchisq(0.49,1)

Null distribution

A little math ...

 $\mathbf{n} = \mathbf{n}_{\mathsf{A}} + \mathbf{n}_{\mathsf{B}}, \quad \mathbf{n}_{\mathsf{A}}^{\mathsf{0}} = \mathsf{E}[\mathbf{n}_{\mathsf{A}} \mid \mathsf{H}_{\mathsf{0}}] = \mathbf{n} \times \pi_{\mathsf{A}}, \quad \mathbf{n}_{\mathsf{B}}^{\mathsf{0}} = \mathsf{E}[\mathbf{n}_{\mathsf{B}} \mid \mathsf{H}_{\mathsf{0}}] = \mathbf{n} \times \pi_{\mathsf{B}}.$

Then
$$L_a/L_0 = \left(\frac{n_A}{n_A^0}\right)^{n_A} \times \left(\frac{n_B}{n_B^0}\right)^{n_B}$$

Or equivalently
$$LRT = 2 \times n_A \times ln\left(\frac{n_A}{n_A^0}\right) + 2 \times n_B \times ln\left(\frac{n_B}{n_B^0}\right)$$
.

 \longrightarrow Why do this?

If we have k groups, then the likelihood ratio test statistic is

$$LRT = 2 \times \sum_{i=1}^{k} n_i \times \ln \left(\frac{n_i}{n_i^0}\right)$$

If H_0 is true, LRT $\sim \chi^2$ (df=k-1)

Null distributions

In a dihybrid cross of tomatos we expect the ratio of the phenotypes to be 9:3:3:1. In 1611 tomatos, we observe the numbers 926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype	n _i	n ⁰	$n_{\rm i}/n_{\rm i}^0$	$n_i imes ln(n_i/n_i^0)$
Tall, cut-leaf	926	906.2	1.02	20.03
Tall, potato-leaf	288	302.1	0.95	-13.73
Dwarf, cut-leaf	293	302.1	0.97	-8.93
Dwarf, potato-leaf	104	100.7	1.03	3.37
Sum	1611			0.74

Results

The test statistics LRT is 1.48. Using a χ^2 (df=3) distribution, we get a p-value of 0.69. We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

The chi-square test

There is an alternative technique. The test is called the chi-square test, and has the greater tradition in the literature. For two groups, calculate the following:

$$X^{2} = \frac{(n_{A} - n_{A}^{0})^{2}}{n_{A}^{0}} + \frac{(n_{B} - n_{B}^{0})^{2}}{n_{B}^{0}}$$

 \rightarrow If H₀ is true, then X^2 is a draw from a χ^2 (df=1) distribution (approximately).

In the first example we observed $n_A = 78$ and $n_B = 22$. Under the null hypothesis we have $n_A^0 = 75$ and $n_B^0 = 25$. We therefore get

$$X^{2} = \frac{(78-75)^{2}}{75} + \frac{(22-25)^{2}}{25} = 0.12 + 0.36 = 0.48.$$

This corresponds to a p-value of 0.49. We therefore have no evidence against the hypothesis $(p_A, p_B) = (0.75, 0.25)$.

 \rightarrow Note: using the likelihood ratio test we got a p-value of 0.48.

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more than just two groups.

If we have k groups, the chi-square test statistic we use is

$$X^{2} = \sum_{i=1}^{k} \frac{(n_{i}-n_{i}^{0})^{2}}{n_{i}^{0}} \sim \chi^{2}$$
(df=k-1)

Tomato example

For the tomato example we get

$$X^{2} = \frac{(926-906.2)^{2}}{906.2} + \frac{(288-302.1)^{2}}{302.1} + \frac{(293-302.1)^{2}}{302.1} + \frac{(104-100.7)^{2}}{100.7}$$
$$= 0.43 + 0.65 + 0.27 + 0.11 = 1.47$$

Using a χ^2 (df=3) distribution, we get a p-value of 0.69. We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

 \rightarrow Using the likelihood ratio test we also got a p-value of 0.69.

In R: chisq.test(c(926,288,293,104),p=c(9,3,3,1)/16)

Test statistics

Let n_i^0 denote the expected count in group i if H_0 is true.

LRT statistic

$$LRT = 2 \ ln \ \left\{ \frac{Pr(data \mid p = MLE)}{Pr(data \mid H_0)} \right\} = \ldots = 2 \ \sum_i n_i \ ln(n_i/n_i^0)$$

 χ^2 test statistic

$$X^{2} = \sum \frac{(observed - expected)^{2}}{expected} = \sum_{i} \frac{(n_{i} - n_{i}^{0})^{2}}{n_{i}^{0}}$$

Null distribution of test statistic

What values of LRT (or X^2) should we expect, if H₀ were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations
 - $\longrightarrow~$ If the sample size n is large, we have $LRT\sim\chi^2(k-1)~~and~~X^2\sim\chi^2(k-1)$

The brute-force method

$$\begin{array}{ll} \text{Pr}(\text{LRT}=g \mid H_0) & = \sum_{\substack{n_1,n_2,n_3 \\ \text{giving LRT}=g}} \text{Pr}(n_1,n_2,n_3 \mid H_0) \end{array}$$

This is not feasible.

Computer simulation

- 1. Simulate a table conforming to the null hypothesis. E.g., simulate $(n_1, n_2, n_3) \sim$ Multinomial $(n=100, \{1/4, 1/2, 1/4\})$
- 2. Calculate your test statistic.
- 3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value \rightarrow the 95th percentile of the results.

Estimated P-value \rightarrow the prop'n of results \geq the observed value.

In R, use rmultinom(n, size, prob) to do n simulations of a Multinomial(size, prob).

We observe the following data:

AA	AB	BB
35	43	22

We imagine that these are counts

 $(n_1, n_2, n_3) \sim Multinomial(n=100, \{p_1, p_2, p_3\}).$

We seek to test $H_0: p_1 = 1/4, p_2 = 1/2, p_3 = 1/4$.

We calculate LRT \approx 4.96 and X² \approx 5.34.

Referring to the asymptotic approximations (χ^2 dist'n with 2 degrees of freedom), we obtain P \approx 8.4% and P \approx 6.9%.

With 10,000 simulations under H_0 , we get P \approx 8.9% and P \approx 7.4%.

 X^2

Summary and recommendation

For either the LRT or the χ^2 test:

- \longrightarrow The null distribution is approximately $\chi^2(k-1)$ if the sample size is large.
- \longrightarrow The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is \geq 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not $p_{AA} = 0.25, \ p_{AB} = 0.5, \ p_{BB} = 0.25$

But rather something like:

$$p_{AA} = f^2, \ p_{AB} = 2f(1-f), \ p_{BB} = (1-f)^2 \quad \ \text{for some f.}$$

For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus.

→ Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

Example data:

AA	AB	BB
5	20	75

Another example

ABO blood groups \longrightarrow 3 alleles A, B, O.

Phenotype A genotype AA or AO

- B genotype BB or BO
- AB genotype AB
 - O genotype O

Allele frequencies: f_A , f_B , f_O (Note that $f_A + f_B + f_O = 1$)

Under Hardy-Weinberg equilibrium, we expect

$$p_A=f_A^2+2f_Af_O \quad p_B=f_B^2+2f_Bf_O \quad p_{AB}=2f_Af_B \quad p_O=f_O^2$$

0	А	В	AB
104	91	36	19

Example data:

LRT for example 1

Data: $(n_{AA}, n_{AB}, n_{BB}) \sim Multinomial(n, \{p_{AA}, p_{AB}, p_{BB}\})$

We seek to test whether the data conform reasonably to $H_0 \hbox{:} \ p_{AA} = f^2, \ p_{AB} = 2f(1-f), \ p_{BB} = (1-f)^2 \qquad \mbox{for some f.}$

General MLEs: $\hat{p}_{AA} = n_{AA}/n, \ \hat{p}_{AB} = n_{AB}/n, \ \hat{p}_{BB} = n_{BB}/n$

$$\begin{split} &\text{MLE under } H_0:\\ &\hat{f} = (n_{AA} + n_{AB}/2)/n \ \longrightarrow \ \tilde{p}_{AA} = \hat{f}^2, \\ &\tilde{p}_{AB} = 2\,\hat{f}\,(1-\hat{f}), \\ &\tilde{p}_{BB} = (1-\hat{f})^2 \end{split}$$

 $\label{eq:LRT} \text{LRT statistic:} \quad \text{LRT = 2} \times \ \text{In} \ \left\{ \frac{\text{Pr}(n_{AA}, n_{AB}, n_{BB} \mid \hat{p}_{AA}, \hat{p}_{AB}, \hat{p}_{BB})}{\text{Pr}(n_{AA}, n_{AB}, n_{BB} \mid \tilde{p}_{AA}, \tilde{p}_{AB}, \tilde{p}_{BB})} \right\}$

LRT for example 2

Data: (n_O , n_A , n_B , n_{AB}) ~ Multinomial($n_A \{p_O, p_A, p_B, p_{AB}\}$)

We seek to test whether the data conform reasonably to H₀: $p_A = f_A^2 + 2f_A f_O$, $p_B = f_B^2 + 2f_B f_O$, $p_{AB} = 2f_A f_B$, $p_O = f_O^2$ for some f_O , f_A , f_B , where $f_O + f_A + f_B = 1$.

General MLEs: $\hat{p}_{O}, \hat{p}_{A}, \hat{p}_{B}, \hat{p}_{AB}$, like before.

MLE under H₀: Requires numerical optimization Call them ($\hat{f}_O, \hat{f}_A, \hat{f}_B$) \longrightarrow ($\tilde{p}_O, \tilde{p}_A, \tilde{p}_B, \tilde{p}_{AB}$)

 $LRT \text{ statistic:} \quad LRT = 2 \times In \left\{ \frac{Pr(n_{O}, n_{A}, n_{B}, n_{AB} \mid \hat{p}_{O}, \hat{p}_{A}, \hat{p}_{B}, \hat{p}_{AB})}{Pr(n_{O}, n_{A}, n_{B}, n_{AB} \mid \tilde{p}_{O}, \tilde{p}_{A}, \tilde{p}_{B}, \tilde{p}_{AB})} \right\}$

χ^2 test for these examples

- Obtain the MLE(s) under H₀.
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H_0 .

• Calculate
$$X^2 = \sum \frac{(observed - expected)^2}{expected}$$

Null distribution for these cases

- Computer simulation (with one wrinkle)
 - \circ Simulate data under H_0 (plug in the MLEs for the observed data)
 - Calculate the MLE with the simulated data
 - Calculate the test statistic with the simulated data
 - Repeat many times
- Asymptotic approximation
 - \circ Under H₀, if the sample size, n, is large, both the LRT statistic and the χ^2 statistic follow, approximately, a χ^2 distribution with k - s - 1 degrees of freedom, where s is the number of parameters estimated under H₀.
 - \circ Note that s = 1 for example 1, and s = 2 for example 2, and so df = 1 for both examples.

Example data:	AA	AB	BB
Example data.	5	20	75

MLE: $\hat{f} = (5 + 20/2) / 100 = 15\%$

Expected counts: 2.25 25.5 72.25

Test statistics: LRT statistic = 3.87 X² = 4.65

Asymptotic $\chi^2(df = 1)$ approx'n: $P \approx 4.9\%$ $P \approx 3.1\%$

10,000 computer simulations: $P \approx 8.2\%$ $P \approx 2.4\%$

Est'd null dist'n of LRT statistic

LRT

Est'd null dist'n of chi-square statistic

Example data:	0	А	В	AB
	104	91	36	19

MLE: $\hat{f}_{O} \approx 62.8\%$, $\hat{f}_{A} \approx 25.0\%$, $\hat{f}_{B} \approx 12.2\%$.

Expected counts: 98.5 94.2 42.0 15.3

Test statistics: LRT statistic = 1.99 X² = 2.10

Asymptotic $\chi^2(df = 1)$ approx'n: $P \approx 16\%$ $P \approx 15\%$

10,000 computer simulations: $P \approx 17\%$ $P \approx 15\%$

 X^2

Data on number of sperm bound to an egg:

 \longrightarrow Do these follow a Poisson distribution?

MLE:

 $\hat{\lambda}$ = sample average = (0 imes 26 + 1 imes 4 + . . . + 5 imes 1) / 38 pprox 0.71

Expected counts $\longrightarrow n_i^0 = n \times e^{-\hat{\lambda}} \hat{\lambda}^i / i!$

$$X^{2} = \sum \frac{(obs - exp)^{2}}{exp} = \dots = 42.8$$

LRT = 2 \sum obs log(obs/exp) = \dots = 18.8

Compare to $\chi^2(df = 6 - 1 - 1 = 4)$

P-value =
$$1 \times 10^{-8}$$
 (χ^2) and 9×10^{-4} (LRT).

By simulation: p-value = 16/10,000 (χ^2) and 7/10,000 (LRT)

Null simulation results

A final note

With these sorts of goodness-of-fit tests, we are often happy when our model does fit.

In other words, we often prefer to fail to reject H_0 .

Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H_0 ?

2 x 2 tables

Apply a treatment to 20 mice from strains A and B, and observe survival.

	Ν	Y	
Α	18	2	20
В	11	9	20
	29	11	40

Question:

Are the survival rates in the two strains the same? Gather 100 rats and determine whether they are infected with viruses A and B.

	I-B	NI-B	
I-A	9	9	18
NI-A	20	62	82
	29	71	100

Question:

Is infection with virus A independent of infection with virus B?

Underlying probabilities

Model:

 $(n_{00}, n_{01}, n_{10}, n_{11}) \sim Multinomial(n, \{p_{00}, p_{01}, p_{10}, p_{11}\})$

or

 $n_{01} \sim Binomial(n_{0+}, p_{01}/p_{0+}) \ \text{ and } \ n_{11} \sim Binomial(n_{1+}, p_{11}/p_{1+})$

Conditional probabilities

 \longrightarrow The questions in the two examples are the same!

They both concern: $p_{01}/p_{0+} = p_{11}/p_{1+}$

 $\label{eq:eq:eq:eq:eq:exp} Equivalently: \qquad p_{ij} = p_{i+} \times p_{+j} \ \ \text{for all } i,j \ \ \longrightarrow \ \text{think } \Pr(\text{A and } \text{B}) = \Pr(\text{A}) \times \Pr(\text{B}).$

This is a composite hypothesis!

 $H_0: \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j \qquad \qquad H_0: \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j$

Degrees of freedom = 4 - 2 - 1 = 1

Expected counts

To get the expected counts under the null hypothesis we:

- $\longrightarrow \ \text{Estimate } p_{1+} \text{ and } p_{+1} \text{ by } n_{1+}/n \text{ and } n_{+1}/n, \text{ respectively.}$ These are the MLEs under H_0!
- \longrightarrow Turn these into estimates of the p_{ii}.
- \longrightarrow Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_0) for the "11" cell is the following:

$$\begin{split} e_{11} &= n \times \hat{p}_{11} \\ &= n \times \hat{p}_{1+} \times \hat{p}_{+1} \\ &= n \times (n_{1+}/n) \times (n_{+1}/n) \\ &= (n_{1+} \times n_{+1})/n \end{split}$$

The other cells are similar.

 \longrightarrow We can then calculate a χ^2 or LRT statistic as before!

$$X^{2} = \frac{(18 - 14.5)^{2}}{14.5} + \frac{(11 - 14.5)^{2}}{14.5} + \frac{(2 - 5.5)^{2}}{5.5} + \frac{(9 - 5.5)^{2}}{5.5} = 6.14$$

LRT = 2 × [18 log($\frac{18}{14.5}$) + . . . + 9 log($\frac{9}{5.5}$)] = 6.52

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 1.3% and 1.1%, respectively.

$$X^{2} = \frac{(9-5.2)^{2}}{5.2} + \frac{(20-23.8)^{2}}{23.8} + \frac{(9-12.8)^{2}}{12.8} + \frac{(62-58.2)^{2}}{58.2} = 4.70$$

LRT = 2 × [9 log($\frac{9}{5.2}$) + . . . + 62 log($\frac{62}{58.2}$)] = 4.37

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 3.0% and 3.7%, respectively.

r x k tables

	Blood type						
Population	А	В	AB	0			
Florida	122	117	19	244	502		
Iowa	1781	1351	289	3301	6721		
Missouri	353	269	60	713	1395		
	2256	1737	367	4258	8618		

 \longrightarrow Same distribution of blood types in each population?

Underlying probabilities

	(Obser	rved o	data			Unde	erlying	g prot	oabilit	ies
	1	2	•••	k			1	2	•••	k	
1	n ₁₁	n ₁₂	• • •	n_{1k}	n ₁₊	1	p ₁₁	p ₁₂	• • •	p_{1k}	p ₁₊
2	n ₂₁	n ₂₂	• • •	n _{2k}	n ₂₊	2	p ₂₁	p ₂₂	•••	p_{2k}	p ₂₊
ł	I	:	•••	ł	ł	:	÷	:	··.	i	I
r	n _{r1}	n _{r2}	• • •	n _{rk}	n _{r+}	r	p _{r1}	p _{r2}	• • •	p _{rk}	p _{r+}
	n ₊₁	n ₊₂	• • •	n _{+k}	n		p ₊₁	p ₊₂	•••	p_{+k}	1

 $H_0 \text{:} \quad p_{ij} = p_{i+} \times p_{+j} \quad \text{ for all } i,j.$

Expected counts

Expected counts under H_0 : $e_{ij} = n_{i+} \times n_{+j}/n$ for all i,j.

χ^2 and LRT statistics

$$X^2$$
 statistic = $\sum \frac{(obs - exp)^2}{exp} = \cdots = 5.64$

LRT statistic = $2 \times \sum obs \ln(obs/exp) = \cdots = 5.55$

Asymptotic approximation

If the sample size is large, the null distribution of the χ^2 and likelihood ratio test statistics will approximately follow a

$$\chi^2$$
 distribution with (r – 1) × (k – 1) d.f.

In the example, $df = (3 - 1) \times (4 - 1) = 6$

 $X^2 = 5.64 \longrightarrow P = 0.46.$

 $LRT = 5.55 \longrightarrow P = 0.48.$

Two-locus linkage in an intercross

	BB	Bb	bb
AA	6	15	3
Aa	9	29	6
aa	3	16	13

Are these two loci linked?

General test of independence

 χ^2 test: X² = 10.4 \longrightarrow P = 3.5% (df = 4) LRT test: LRT = 9.98 \longrightarrow P = 4.1% Fisher's exact test: P = 4.6%

A more specific test

Obs	serve	ed d	ata	Underlying probabilities			
	BB	Bb	bb		BB	Bb	bb
AA	6	15	3	AA	$\frac{1}{4}(1-\theta)^2$	$\frac{1}{2}\theta(1-\theta)$	$\frac{1}{4}\theta^2$
Aa	9	29	6	Aa	$\frac{1}{2}\theta(1-\theta)$	$\frac{1}{2}[\theta^2 + (1 - \theta)^2]$	$\frac{1}{2}\theta(1-\theta)$
aa	3	16	13	aa	$\frac{1}{4}\theta^2$	$\frac{1}{2}\theta(1-\theta)$	$\frac{1}{4}(1-\theta)^{2}$

 $H_0: \theta = 1/2$ versus $H_a: \theta < 1/2$

Use a likelihood ratio test!

- \longrightarrow Obtain the general MLE of θ .
- \rightarrow Calculate the LRT statistic = 2 ln $\left\{ \frac{\Pr(\text{data} \mid \hat{\theta})}{\Pr(\text{data} \mid \theta = 1/2)} \right\}$
- \longrightarrow Compare this statistic to a $\chi^2(df = 1)$.

Results

	BB	Bb	bb
AA	6	15	3
Aa	9	29	6
aa	3	16	13

MLE: $\hat{\theta} = 0.359$

LRT statistic: LRT = 7.74 \longrightarrow P = 0.54% (df = 1)

- \longrightarrow Here we assume Mendelian segregation, and that deviation from H₀ is "in a particular direction."
- → If these assumptions are correct, we'll have greater power to detect linkage using this more specific approach.