Goodness of fit - 2 classes

A B
/8 22

— Do these data correspond reasonably to the proportions 3:17

We previously discussed options for testing pa = 0.75!

e Exact p-value
e Exact confidence interval

e Normal approximation



Goodness of fit - 3 classes

AA AB BB
35 43 22

— Do these data correspond reasonably to the proportions 1:2:17?



Multinomial distribution

e Imagine an urn with k types of balls.

e Let p, denote the proportion of type i.

e Draw n balls with replacement.

e Outcome: (ny,ng,...,Nng), with > .n; = n, where n; is the no.
balls drawn that were of type i.

n! e

N4
><...><
n1!><---><nk!p1 P

if 0<nm<n, > .n=n

— P(X1=n1, C. ,Xk=nk) =

Otherwise P(X4=n4,..., Xk=nk) = 0.



Example

Let (pq, P2, P3) =(0.25, 0.50, 0.25) and n = 100.

100!

35 43 22
351431 op] 020 0907 0.25

P(X1=35, X»=43, X3=22) =

~7.3x 107

Rather brutal, numerically speaking.

—— Take logs (and use a computer).



Goodness of fit test

We observe (n4, nz, n3) ~ Multinomial(n,p={p+, P>, P3})-

We seek to test Hp : py = 0.25,p, = 0.5,p5; = 0.25.

versus H, : Hg is false.

We need two things:

—— A test statistic.

—— The null distribution of the test statistic.



The likelihood-ratio test (LRT)

Back to the first example:

Test Ho: (pa,Ps) = (ma,ms) Versus Hg: (Pa, Ps) # (Ta, T8).

— MLE under Hy:  ps=na/n  where n =n, + ng.

Likelihood under Hy: Ly = Pr(nalpa =Pa) = (nA) X Pt X (1 — pa) A

Likelihood under Hy: Lo = Pr(nalpa = ma) = (nrl\) X Tt X (1 — rp)

—— Likelihood ratio test statistic: LRT =2 x In (La/Lo)

— Some clever people have shown that if Hg is true, then LRT
follows a y?(df=1) distribution (approximately).



Likelihood-ratio test for the example

We observed n, = 78 and ng = 22.
Ho : (PA, Pg) = (0.75,0.25)
Ha : (P4, Ps) # (0.75,0.25)

La = Pr(n,=78 | p,=0.78) = (') x 0.78"® x 0.22%* = 0.096.
Lo = Pr(na=78 | p,=0.75) = (') x 0.75"® x 0.25% = 0.075.

— LRT =2 x In (Ly/Lo) = 0.49.

Using a y?(df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.

InR: p-value=1 - pchisqg(0.49,1)
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A little math ...

Nn=na+ng, NY=E[Na|Hol=nxm, n¢=E[ng|Hg]=nx 7.

Then Lu/lg = (:_Q) " (g—g) -

Or equivalently LRT =2xn,xIn (”—OA) + 2xNngxIn (%)
A B

n

—» Why do this?



Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT = 2x 3¢, nix I (13)

If Ho is true, LRT ~ y?(df=k-1)
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Example

In a dihybrid cross of tomatos we expect the ratio of the pheno-
types to be 9:3:3:1. In 1611 tomatos, we observe the numbers
926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype n, n’ n/n?  nxIn(n/nf)
Tall, cut-leaf 926 906.2 1.02 20.03
Tall, potato-leaf 288  302.1 0.95 -13.73
Dwarf, cut-leaf 293 302.1 0.97 -8.93
Dwarf, potato-leaf 104  100.7 1.03 3.37

Sum 1611 0.74



Results
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The test statistics LRT is 1.48. Using a y?(df=3) distribution, we
get a p-value of 0.69. We therefore have no evidence against the
hypothesis that the ratio of the phenotypes is 9:3:3:1.



The chi-square test

There is an alternative technique. The test is called the chi-square
test, and has the greater tradition in the literature. For two groups,
calculate the following:

2 (np—n? . ng—n2)°
X< = ( - A) + ( - B)
A B

— If Hp is true, then X ? is a draw from a \2(df=1) distribution
(approximately).



Example

In the first example we observed n, = 78 and ng = 22. Under the
null hypothesis we have n® = 75 and n? = 25. We therefore get

X2 =T8T 4 @225 _ 0 12 4 0,36 = 0.48.

This corresponds to a p-value of 0.49. We therefore have no evi-
dence against the hypothesis (p,, ps) = (0.75,0.25).

— Note: using the likelihood ratio test we got a p-value of 0.48.

InR: chisqg.test(c(78,22),p=c(0.75,0.25))



Generalization to more than two groups

As with the likelinood ratio test, there is a generalization to more
than just two groups.

If we have k groups, the chi-square test statistic we use is

X?%=Y¥ <”i;2i°>2 ~ x?(df=k-1)



Tomato example

For the tomato example we get

2 _ (926-906.2)° . (288-302.1)° . (293-302.1)? . (104-100.7)?
~ 906.2 302.1 302.1 100.7

=043 +0.65+0.27 +0.11 =1.47

Using a y?(df=3) distribution, we get a p-value of 0.69. We there-
fore have no evidence against the hypothesis that the ratio of the
phenotypes is 9:3:3:1.

— Using the likelihood ratio test we also got a p-value of 0.69.

InR: chisqg.test(c(926,288,293,104),p=c(9,3,3,1)/16)



Test statistics

Let n® denote the expected count in group i if Hg is true.

LRT statistic

_ Pr(data |p=MLE)|
LRT =2 1In { Pr(data | Ho } =...=2>_.n;In(n;/n?)

v’ test statistic

» ~— (observed — expected)® <— (n;—n?)?
= Z expected - Z



Null distribution of test statistic

What values of LRT (or X?) should we expect, if Hy were true?

The null distributions of these statistics may be obtained by:
e Brute-force analytic calculations
e Computer simulations

e Asymptotic approximations
— If the sample size n is large, we have

LRT ~ v2(k — 1) and X2~ x3(k — 1)



The brute-force method

PLRT =g |Ho) = »  Pr(n;,nznz|Ho)

N4,N2,N3
giving LRT =g

This is not feasible.



Computer simulation

1. Simulate a table conforming to the null hypothesis.
E.g., simulate (n1, nz, n3) ~ Multinomial(n=100, {1/4, 1/2, 1/4})

2. Calculate your test statistic.

3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value — the 95th percentile of the results.

Estimated P-value — the prop’n of results > the observed value.

In R, use rmultinom(n, size, prob) todo n simulations of a Multinomial(size, prob).



Example

We observe the following data:
AA AB BB
35 43 22

We imagine that these are counts

(n17 No, n3) ~ MU|t|n0m|a|(n=1 001{p1 , Po, p3})
We seek totest Hy : py = 1/4, p, =1/2, p3 = 1/4.

We calculate LRT ~ 4.96 and X2 ~ 5.34.

Referring to the asymptotic approximations (y? dist’n with 2 de-
grees of freedom), we obtain P ~ 8.4% and P ~ 6.9%.

With 10,000 simulations under Hp, we get P ~ 8.9% and P ~ 7.4%.



Example

Est’d null dist’n of LRT statistic

Observed 95th %ile = 6.06
I — I I
5 10 15
LRT
Est’d null dist’n of chi-square statistic
Observed 95th %ile = 6.00
\xﬁhi; _
— | |
5 10 15



Summary and recommendation

For either the LRT or the y? test:

— The null distribution is approximately y?(k — 1) if the sample
size is large.

— The null distribution can be approximated by simulating data
under the null hypothesis.

If the sample size is sufficiently large that the expected count in
each cell is > 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.



Composite hypotheses

Sometimes, we ask not  paa = 0.25, pag = 0.5, pgg = 0.25

But rather something like:

Pan = %, pag = 2f(1 — 1), pgg = (1 — )2 for some f.

For example: Consider the genotypes, of a random sample of in-
dividuals, at a diallelic locus.

— Is the locus in Hardy-Weinberg equilibrium (as expected
in the case of random mating)?

Example data:

AA  AB BB




Another example

ABO blood groups — 3 alleles A, B, O.

Phenotype A  genotype AA or AO
B genotype BB or BO
AB genotype AB
O genotype O

Allele frequencies: fa, fg, fo (Note that fo +fg +fo = 1)

Under Hardy-Weinberg equilibrium, we expect

P = Ta +2fafo  pg=Tg +2fsfo  pag =2fafs  Po = To

O A B AB
104 91 36 19

Example data:




LRT for example 1

Data: (naa, Nas, Nes) ~ Multinomial(n,{paa, Pas; Pss})
We seek to test whether the data conform reasonably to

H(): pAA — f2, pAB — 2f(1 — f), pBB — (1 - f)2 for some f.

General MLEs:

Paa = Naa/N, Pag = Nas/N, Pgg = Nea/N

MLE under Hp:
: N 2 . . .
f=(naa+nag/2)/n — paa =T ,Pag=2f(1—1),pgg = (1 —1)°

LRT statistic: LRT =2 x In {Pr(nAA’ "B, N8B | Paa, Pas: pBB)}

Pr(naa, Nas, NBB | Paa, Pag: Pea)



LRT for example 2

Data: (no, Na, Ng, Nag) ~ Multinomial(n,{pg, P, Ps: Pas})

We seek to test whether the data conform reasonably to

Ho: p, = fa + 2fafo, Ps = fa + 2fafo, Pag = 2fafs, Po = 5

for some fo, fa, fg, where fg +fp + fg = 1.
General MLEs:  pg, Pa, Ps, Pag, like before.

MLE under Hp: Requires numerical optimization
Call them (an an i:B) — (I:N)Oa I5A7 687 ISAB)

LRT statistic: LRT=2 x In {Pr(”o’ ", Ne, NAB | Po, Pa, Pe. pAB)}

Pr(no, Na, Ng, NAB | E)Oa E)Aa ﬁB) ISAB)



2 test for these examples

e Obtain the MLE(s) under Ho.
e Calculate the corresponding cell probabilities.

e Turn these into (estimated) expected counts under Hp.

(observed — expected)?

e Calculate X* =3~ expected




Null distribution for these cases

e Computer simulation (with one wrinkle)
o Simulate data under Hg (plug in the MLEs for the observed data)
o Calculate the MLE with the simulated data
o Calculate the test statistic with the simulated data
o Repeat many times

e Asymptotic approximation

o Under Hy, if the sample size, n, is large, both the LRT statis-
tic and the \? statistic follow, approximately, a 2 distribution
with k — s — 1 degrees of freedom, where s is the number of
parameters estimated under Hp.

o Note that s = 1 for example 1, and s = 2 for example 2, and
so df = 1 for both examples.



Example 1

AA AB BB

Example data:
5 20 75

MLE: f=(5+20/2)/100 = 15%

Expected counts: 225 255 72.25

Test statistics:  LRT statistic =3.87 X2 =4.65

Asymptotic y?(df = 1) approx’n: P =~49% P=~3.1%

10,000 computer simulations: P ~82% P ~2.4%



Example 1

Est’d null dist’n of LRT statistic

95th %ile = 4.58

Obsirved
T T T
2 4 6
LRT

Est’d null dist’n of chi-square statistic

95th %ile = 3.36
Observed




Example 2

O A B AB

Example data:
104 91 36 19

MLE: fo~ 62.8%, fa~ 25.0%, fg~ 12.2%.

Expected counts: 985 942 420 153

Test statistics:  LRT statistic=1.99 X2 =2.10

Asymptotic y?(df = 1) approx’n: P =~16% P~ 15%

10,000 computer simulations: P =x17% P~ 15%



Example 2

Est’d null dist’n of LRT statistic

95th %ile = 3.91
Observed

LRT

Est’d null dist’n of chi-square statistic

95th %ile = 3.86
Observed

A4

I III| I
2 4 6



Example 3

Data on number of sperm bound to an egg:

o 1 2
count 26 4 4

3 4 5
2 1 1

—— Do these follow a Poisson distribution?

MLE:

AN

A=sampleaverage=(0 x26+1 x4+...+5x1)/38~0.71

Expected counts — n? =n x e\ Al



Example 3

observed 26 4 4 2 1 1
expected 18.7 13.3 47 11 02 0.0

X2 =y lobs—exp) _ 408

exp

LRT =2 obs log(obs/exp)=...=18.8

Compare to y2(df =6 —1—1 = 4)
P-value =1 x 107° (x2) and 9 x 10~* (LRT).

By simulation: p-value = 16/10,000 (x*) and 7/10,000 (LRT)



Null simulation results

n %mfbsirved

| | | | | |
0 20 40 60 80 100

Simulated * statistic

Observed

|

120

| | | |
5 10 15 20

Simulated LRT statistic



A final note

With these sorts of goodness-of-fit tests, we are often happy when
our model does fit.

In other words, we often prefer to fail to reject Hp.

Such a conclusion, that the data fit the model reasonably well,
should be phrased and considered with caution.

We should think: how much power do | have to detect, with these
limited data, a reasonable deviation from Hg?



2 X 2 tables

Apply a treatment to 20 mice
from strains A and B, and ob-
serve survival.

N Y
A 18 2 20
B 11 9 20
29 11 40
Question:

—— Are the survival rates
In the two strains the
same”?

Gather 100 rats and deter-
mine whether they are in-
fected with viruses A and B.

I-B NI-B
I-A 9 9 18
NI-A | 20 62 82
29 71 100

Question:

— Is infection with virus A
independent of infection
with virus B?



Underlying probabilities

— Observed data — Underlying probabilities
B B
O 1 0 1
A 0 |ngo Not| Nos A 0 Poo Pot| Pos
T N0 Ny Ny 1T 'P1o P11| P14
N Ny N Pio Pyr 1
Model:

(Noo, No1, N10, N11) ~ Multinomial(n,{Pgg, Po1: P10: P11})

or

No1 ~ Binomial(No4, Pg1/Po.) @nd nq1 ~ Binomial(ni4, pP11/P1,)



Conditional probabilities

Underlying probabilities Conditional probabilities
5 Pr(B =1 A = 0) = Po;/Po.
O 1
PrB=1|A=1)=
A 0 |Poo Por Pos ( ) =P11/P1+
T P10 P11] P1s Pr(A=1[B=0)=pq/Ps0o
Pro Pur 1 Pr(A=1]B=1)=py/P,

— The questions in the two examples are the same!

They both concern:  pgy/Pos = P11/P14

Equivalently: Pij = Pix X P4 forall i,j — think Pr(A and B) = Pr(A) x Pr(B).



This is a composite hypothesis!

2 X 2 table

B
0 1

A 0 |pgy Po

1 P10 P11
p+0 p+1

Ho:  pj = piy X Py for all i Ho:

p0+

P14
1

A different view

Poo Po1 P10 P11

P = Pix X P, for all'i,]

Degrees of freedom=4-2-1=1



Expected counts

Observed data Expected counts

B B

O 1 0 1
A 0 ngo No1 nNos A 0 eg €o1| Nos
1 niyg Ny Ny 1 eq0 €11 N1s
Ny Ny N Ny Ny N

To get the expected counts under the null hypothesis we:

— Estimate p,, and p,, by ny,./n and n,4/n, respectively.
These are the MLEs under Hg!

— Turn these into estimates of the p;.
— Multiply these by the total sample size, n.



The expected counts

The expected count (assuming Hp) for the “11” cell is the following:

€11 = N X Pyy
= N X ﬁ1+ X |5+1
=N x (N14+/N) X (Ny1/N)

= (N4 X Nyq)/N
The other cells are similar.

— We can then calculate a 2 or LRT statistic as before!



Example 1

Observed data Expected counts
N Y N Y
A 18 2 20 A 145 55 20
B 11 9 20 B | 145 5.5 20
29 11 40 29 11 40

R e

LRT =2 x [18 log(2%) + ... + 9 log(=%)] = 6.52

P-values (based on the asymptotic y?(df = 1) approximation):

1.3% and 1.1%, respectively.



Example 2

Observed data Expected counts
I-B NI-B I-B NI-B
I-A 9 9 18 I-A | 5.2 12.8
NI-A | 20 62 82 NI-A | 23.8 58.2
29 /1 100 29 ra

5> _(9-52)2 (20-23.82  (9-12.8)2 (62-58.2)2 _
XK=+ "8 1+ 128 + 882 =470

LRT =2 x [9log(sy) + . .. + 62 log (%)) = 4.37

18
82
100

P-values (based on the asymptotic y?(df = 1) approximation):

3.0% and 3.7%, respectively.



Population
Florida
lowa
Missouri

r x k tables

Blood type
A B AB O

122 117 19 244
1781 1351 289 3301
353 269 60 713

502
6721
1395

2256 1737 367 4258 8618

— Same distribution of blood types in each population?



Underlying probabilities

Observed data Underlying probabilities

1 2 .- K 1 92 ... k
T/n1g Ny2 oo Ny Ny 1 P11 P12 -+ Pk P14+
2 N21 Ng2 -+ Ngk Ny 2|P21 P22 - - Pak P2+
Nk N2 -+ N | N ''Pri Pr2 -+ Prk | Pr+
N1 N2 -+ Ny N P+1 P+2 - P+k 1

Ho:  pj=pi xpy foralliyj.



Expected counts

Observed data

A B AB O
F | 122 117 19 244 | 502
| 11781 1351 289 3301 | 6721
M| 353 269 60 713 1395
2256 1737 367 4258 8618

Expected counts under Hp:

Expected counts

A B AB O
F| 131 101 21 248 | 502
1759 1355 286 3321|6721
M| 365 281 59 689 1395
2256 1737 367 4258 8618

e = hi, x ny/n  forall i,j.



v2 and LRT statistics

Observed data

A B AB O
F| 122 117 19 244 | 502
1781 1351 289 3301|6721
M| 353 269 60 713 1395
2256 1737 367 4258 8618

X2 statistic = Y (02 &P5 = ... = 5,64

P

Expected counts

A B AB O

Fl 131 101 21 248
| 11759 1355 286 3321
M| 365 281 59 689

502
6721
1395

2256 1737 367 4258 8618

LRT statistic =2 x > obs In(obs/exp) =--- =5.55



Asymptotic approximation

If the sample size is large, the null distribution of the y? and likeli-
hood ratio test statistics will approximately follow a

\2 distribution with (r — 1) x (k — 1) d.f.

In the example, df=(3—-1) x (4—-1)=6

X?=564 — P =0.46.

LRT =555 — P =0.48.



Two-locus linkage in an intercross

BB Bb bb
AA 6 15 3
Aal 9 29 6
aa| 3 16 13

Are these two loci linked?



General test of independence

Observed data

AA
Aa
aa

Y? test:

LRT test:

BB Bb bb

6 15 3
9 29 6
3 16 13

X2=104 — P=35%

Expected counts

AA
Aa
aa

(df =

LRT =998 — P=41%

Fisher’s exact test:

P =4.6%

BB Bb bb

43 144 5.3
7.9 26.4 9.7
5.8 19.2 7.0

4)




Observed data

AA
Aa
aa

BB Bb bb

6 15 3 AA

9 29 6 Aa

3 16 13 aa
Ho: 0=1/2

A more specific test

Underlying probabilities

BB Bb bb
(1—02  10(1-0) 162
301 —0) 302+ (1 —0)2) 361 —0)

it 301 -0) (1 -0y
versus Hj: 6 < 1/2

— QObtain the general MLE of 6.

_. Calculate the LRT statistic = 2 In {

Use a likelihood ratio test!

Pr(data | 6)

Pr(data | 6=1/2)

— Compare this statistic to a y*(df = 1).




Results

BB Bb bb
AA 6 15 3
Aa 9 29 6
aa| 3 16 13

MLE: 6 =0.359

LRT statistic: LRT =774 — P =0.54% (df = 1)

— Here we assume Mendelian segregation, and that deviation
from Hg is “in a particular direction.”

— If these assumptions are correct, we’ll have greater power to
detect linkage using this more specific approach.
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