Observational Studies

Controlled experiment:

The investigator chooses who receives the treatment.

Observational study:

The investigator doesn’t choose who receives the treatment.

The subjects themselves might choose whether they receive the treatment).

Key issues:
e Correlation (association) is not causation.
e Confounding

e Simpson’s paradox



Researchers have shown that...
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Causes of association

Suppose A is associated with B.

This may be because:

e A causes B
e B causes A

e X IS associated with both A and B.



Confounding

In the association of A and B, X is a confounder if it is associated
with both A and B.

X need not be a cause of either A or B.

For example, in the consideration of smoking and lung cancer, a
gene which

e causes smoking but is not associated with lung cancer is
not a confounder.

e causes lung cancer but is not associated with smoking is
not a confounder.

e causes lung cancer and is associated with smoking is a
confounder.



Controlling for a confounder

The problem with observational studies is that subjects differ among
themselves in crucial ways besides the treatment.

We deal with this by controlling for the confounding variable(s)—
we compare smaller, more homogeneous subgroups.

e Anticipate, measure, and control for possible
confounders.

e Think about other possible confounders that were not
considered.

e Never draw very strong conclusions from a single
observational study.



Sex bias in graduate admissions

Observational study on sex bias in graduate admissions at the
University of California, Berkeley.

During the study period:
e 44% (of 8,442) men were admitted

e 35% (of 4,321) women were admitted

Does this indicate a sex bias?



Sex bias in graduate admissions

For the six largest majors:

Men Women

Number of Percent Number of Percent
Major applicants admitted applicants admitted

A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

Simpson’s paradox:

Relationships between variables within subgroups can be
reversed when the subgroups are combined.



Confounding
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Confounding

Player 1995 1996 Combined

Derek Jeter .250 (12/48) .314 (183/582) | .310(195/630)

David Justice | .253 (104/411) .321 (45/140) .271 (149/551)
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Common genetic variants account for differences in
gene expression among ethnic groups

Richard S Spielman!, Laurel A Bastone?, Joshua T Burdick®, Michael Morley>, Warren ] Ewens* &

Vivian G Cheung!-*>

Variation in DNA sequence contributes to individual
differences in quantitative traits, but in humans the specific
sequence variants are known for very few traits. We
characterized variation in gene expression in cells from
individuals belonging to three major population groups. This
quantitative phenotype differs significantly between European-
derived and Asian-derived populations for 1,097 of 4,197 genes
tested. For the phenotypes with the strongest evidence of cis
determinants, most of the variation is due to allele frequency
differences at cis-linked regulators. The results show that
specific genetic variation among populations contributes
appreciably to differences in gene expression phenotypes.
Populations differ in prevalence of many complex genetic
diseases, such as diabetes and cardiovascular disease. As some
of these are probably influenced by the level of gene
expression, our results suggest that allele frequency differences
at regulatory polymorphisms also account for some population
differences in prevalence of complex diseases.

genetic diseases. The marked population differences in prevalence of
these qualitative phenotypes (such as cystic fibrosis’ and Tay-Sachs
disease!?) are entirely due to differences in frequencies of the mutant
alleles. However, genetic differences among populations in quantita-
tive phenotypes are potentially just as important functionally.

Here we extend the comparative genetic analysis of population
differences from qualitative phenotypes to a particular quantitative
phenotype, the expression level of genes. The choice of gene expres-
sion as a phenotype provides a large set of comparable traits, all
measured at the same time in each individual. Our goals are to
determine what proportion of gene expression phenotypes differs
significantly between populations and to what extent the phenotypic
differences are attributable to specific genetic polymorphisms. We find
that at least 25% of the gene expression phenotypes differ significantly
between the major populations studied, and specific genetic variation
(in allele frequency) accounts for the difference in the most significant
instances among the phenotypes that are cis regulated.

We measured the expression of genes in Epstein-Barr virus (EBV)-
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Confounding of population and processing time
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On the design and analysis of gene expression studies
in human populations

To the Editor:
In a recent Nature Genetics Letter entitled
“Common genetic variants account for differ-
ences in gene expression among ethnic groups,”
Spielman et al.' estimate the number of genes
differentially expressed between individuals
of European (CEU) and Asian (ASN) ances-
try and suggest that these differences can be
accounted for by measured genetic variants.
We recently performed a similar study com-
paring differences in gene expression among
individuals of European and Yoruban ances-
try?. Given the scientific, medical and societal
implications of this research area, it is impor-
tant for the scientific community to carefully
revisit and critically evaluate the conclusions
of such studies. To this end, we have reanalyzed
the data in Spielman et al.' to provide a com-
mon basis for comparison with our study. In
doing so, we found that important issues arise
about the accuracy of their results.

The authors categorized genes as differ-

Yo
genﬁaﬂy expressed if they had P values <10 >,

corresponding to a Sidak corrected P value
of <0.05 for multiple hypothesis tests. At
this significance threshold, they report that
approximately 26% of genes are differentially
expressed between the CEU and ASN samples
(ASN denotes the combined HapMap Beijing
Chinese (CHB) and Japanese (JPT) HapMap
individuals'). As a Sidak correction is similar
to a Bonferroni correction, the proportion of
genes found to be significant is a conservative
estimate of the true overall proportion of dif-
ferentially expressed genes. A more widely used
and less conservatively biased approach is to
analyze the complete distribution of P values,
which provides a lower bound estimate of the
proportion of truly differentially expressed
genes>*. Applying this methodology to the
distribution of P values obtained by t tests on
genes expressed in lymphoblastoid cell lines as
defined in Spielman et al.!, we estimate that
at least 78% of these genes are differentially
expressed between the CEU and ASN samples
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Figure 1 Distribution of Pvalues for tests of differential expression. (a) F values resulting from tests of
differential expression between the CEU and ASN samples. (b) F values resulting from tests of differential
expression with respect to year in which the microarrays were processed. (c) Pvalues resulting from tests
of differential expression between the CEU and ASN samples while controlling for the year in which the
sample was processed. (d) Pvalues resulting from tests of differential expression with respect to year

in which the microarrays were processed only among the CEU samples. The y-axis in each plot is drawn
to reflect a histogram density, where the total area of all rectangles is 1. Under the null hypothesis of

no differential expression, we expect the P values to be uniformly distributed between O and 1, forming
a histogram with frequencies following the dashed black line. Using well-established methodology3:4,

we estimate the proportion of differentially expressed genes in a-d to be 78%, 94%, 0% and 79%,
respectively. The odd shape of the histogram in ¢ is attributable to the almost complete confounding of
year of processing and population, illustrating the underlying problem with the study design.

(Fig. 1a). Estimates of this proportion were
nearly identical regardless of whether P values
were obtained from standard ¢ tests, permuta-
tion ¢ tests, bootstrap ¢ tests or nonparametric
Wilcoxon rank-sum tests (data not shown).
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It seems implausible that as many as 78% of
genes are differentially expressed between the
CEU and ASN samples. For example, based on
the complete distribution of P values, we have
recently estimated that approximately 17% of
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MECHANISMS OF DISEASE

| Mechanisms of disease |

O Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin Ill, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills,
Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

Summary

Background New technologies for the detection of early-
stage ovarian cancer are urgently needed. Pathological
changes within an organ might be reflected in proteomic
patterns in serum. We developed a bioinformatics tool and
used it to identify proteomic patterns in serum that
distinguish neoplastic from non-neoplastic disease within
the ovary.

Methods Proteomic spectra were generated by mass
spectroscopy (surface-enhanced laser desorption and
ionisation). A preliminary “training” set of spectra derived
from analysis of serum from 50 unaffected women and
50 patients with ovarian cancer were analysed by an
iterative searching algorithm that identified a proteomic
pattern that completely discriminated cancer from non-
cancer. The discovered pattern was then used to classify
an independent set of 116 masked serum samples: 50
from women with ovarian cancer, and 66 from unaffected
women or those with non-malignant disorders.

Findings The algorithm identified a cluster pattern that, in
the training set, completely segregated cancer from non-
cancer. The discriminatory pattern correctly identified all
50 ovarian cancer cases in the masked set, including all
18 stage | cases. Of the 66 cases of non-malignant
disease, 63 were recognised as not cancer. This result
yielded a sensitivity of 100% (95% Cl 93-100), specificity
of 95% (87-99), and positive predictive value of 94%
(84-99).

Interpretation These findings justify a prospective
population-based assessment of proteomic pattern
technology as a screening tool for all stages of ovarian
cancer in high-risk and general populations.

Lancet 2002; 359: 572-77

Introduction

Application of new technologies for detection of ovarian
cancer could have an important effect on public health,’
but to achieve this goal, specific and sensitive molecular
markers are essential.’> This need is especially urgent in
women who have a high risk of ovarian cancer due to
family or personal history of cancer, and for women with
a genetic predisposition to cancer due to abnormalities
in predisposition genes such as BRCA1 and BRCA2.
There are no effective screening options for this
population.

Ovarian cancer presents at a late clinical stage in more
than 80% of patients,' and is associated with a 5-year
survival of 35% in this population. By contrast, the
5-year survival for patients with stage I ovarian cancer
exceeds 90%, and most patients are cured of their
disease by surgery alone.'® Therefore, increasing the
number of women diagnosed with stage I disease should
have a direct effect on the mortality and economics of
this cancer without the need to change surgical or
chemotherapeutic approaches.

Cancer antigen 125 (CA125) is the most widely
used biomarker for ovarian cancer.'® Although
concentrations of CA125 are abnormal in about 80% of
patients with advanced-stage disease, they are increased
in only 50-60% of patients with stage I ovarian cancer."*
CA125 has a positive predictive value of less than 10%
as a single marker, but the addition of ultrasound
screening to CA125 measurement has improved the
positive predictive value to about 20%.°

Low-molecular-weight serum protein profiling might
reflect the pathological state of organs and aid in
the early detection of cancer. Matrix-assisted laser
desorption and ionisation time-of-flight (MALDI-TOF)
and surface-enhanced laser desorption and ionisation
time-of-flight (SELDI-TOF) mass spectroscopy can profile
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Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani,'* Nadia Solovieff,! Annibale Puca,’ Stephen W. Hartley,1 Efthymia Melista,? Stacy
Andersen,”* Daniel A. Dworkis,’ Jemma B. Wilk,” Richard H. Myers,” Martin H. Steinberg,® Monty
Montano,’ Clinton T. Baldwin,®” Thomas T. Perls**
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Healthy aging is thought to reflect the combined influence
of environmental factors (lifestyle choices) and genetic
factors. To explore the genetic contribution, we undertook
a genome-wide association study of exceptional longevity
(EL) in 1055 centenarians and 1267 controls. Using these
data, we built a genetic model that includes 150 single
nucleotide polymorphisms (SNPs) and found that it could
predict EL with 77% accuracy in an independent set of
centenarians and controls. Further in-silico analysis
revealed that 90% of centenarians can be grouped into 19
clusters characterized by different combinations of SNP
genotypes—or genetic signatures—of varying predictive
value. The different signatures, which attest to the genetic
complexity of EL, correlated with differences in the
prevalence and age of onset of age-associated diseases
(e.g., dementia, hypertension, and cardiovascular disease)
and may help dissect this complex phenotype into
subphenotypes of healthy aging.

Based upon the hypothesis that exceptionally old
individuals are carriers of multiple genetic variants that
influence human lifespan (4), we conducted a genome-wide
association study (GWAS) of centenarians. Centenarians are
a model of healthy aging, as the onset of disability in these
individuals is generally delayed until they are well into their
mid-nineties (5, 6 ). We studied 801 unrelated subjects
enrolled in the New England Centenarian Study (NECS) and
926 genetically matched controls. NECS subjects were
Caucasians who were born between 1890 and 1910 and had
an age range of 95 to 119 years (median age 103 years).
Figure S1 in the Supporting Online Material (7) describes the
age distribution. Approximately one-third of the NECS
sample included centenarians with a first-degree relative also
achieving EL, thus enhancing the sample’s power (8).
Controls included 243 NECS referent subjects who were
spouses of centenarian offspring or children of parents who
died at the mean age of 73 years, and genome-wide SNP data
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