Paired data

Gather 100 rats and determine whether they are infected with viruses A and B.

Underlying probabilities

 \longrightarrow Is the rate of infection of virus A the same as that of virus B? In other words: Is $p_{1+} = p_{+1}$? Equivalently, is $p_{10} = p_{01}$?

McNemar's test

 $H_0: p_{01} = p_{10}$

Under H₀, e.g. if $p_{01} = p_{10}$, the expected counts for cells 01 and 10 are both equal to $(n_{01} + n_{10})/2$.

The
$$\chi^2$$
 test statistic reduces to $X^2 = \frac{(n_{01} - n_{10})^2}{n_{01} + n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^2(df = 1)$.

For the example: $X^2 = (20 - 9)^2 / 29 = 4.17 \longrightarrow P = 4.1\%$.

An exact test

Condition on $n_{01} + n_{10}$.

Under H₀, $n_{01} \mid n_{01} + n_{10} \sim Binomial(n_{01} + n_{10}, 1/2).$

In R, use the function binom.test.

```
\rightarrow For the example, P = 6.1%.
```

Paired data

— Taking appropriate account of the "pairing" is important!

Are there site-specific deviations from random coil dimensions?

Förster Resonance Energy Transfer enables us to measure the distance between two dye molecules within a certain range. This can be used to study site-specific deviations from random coil dimensions in highly denatured peptides.

time

time

We have two underlying distributions for the green and red photons:

- One stemming from a peptide only having a donor dye.
- One stemming from a peptide being properly tagged with a donor and an acceptor dye.

Assume a photon has probability p_0 of being red in the former situation, and p_1 in the latter.

Assume we observe n_i photons at time point *i*. Then the number of red photons is simply Bernoulli (n_i, p_i) , where p_i is either p_0 or p_1 . Assume that the probability of observing photons from a peptide without an acceptor dye at any time is p, independent of the total number of photons observed. Let X be the number of red photons. Then

$$P(X = x_i | n_i) = P(X = x_i | n_i, p_0) \times p + P(X = x_i | n_i, p_1) \times (1 - p)$$

= $\binom{n_i}{x_i} p_0^{x_i} (1 - p_0)^{n_i - x_i} \times p + \binom{n_i}{x_i} p_1^{x_i} (1 - p_1)^{n_i - x_i} \times (1 - p),$

and hence

$$L(p, p_0, p_1) = \prod_{i=1}^{N} \left[\binom{n_i}{x_i} p_0^{x_i} (1-p_0)^{n_i-x_i} \times p + \binom{n_i}{x_i} p_1^{x_i} (1-p_1)^{n_i-x_i} \times (1-p) \right].$$

