Paired data

Gather 100 rats and determine whether they are infected with viruses A and B.

Underlying probabilities

	I-B	NI-B	
I-A	9	9	18
$\mathrm{NI}-\mathrm{A}$	20	62	82
	29	71	100

	B	
	0	1
A 0	p_{00}	p_{01}
1	p_{10}	p_{11}
	p_{+0}	p_{+1}

\longrightarrow Is the rate of infection of virus A the same as that of virus B ?
In other words: Is $\mathrm{p}_{1+}=\mathrm{p}_{+1}$? Equivalently, is $\mathrm{p}_{10}=\mathrm{p}_{01}$?

McNemar's test

$H_{0}: p_{01}=p_{10}$

Under H_{0}, e.g. if $p_{01}=p_{10}$, the expected counts for cells 01 and 10 are both equal to $\left(n_{01}+n_{10}\right) / 2$.

The χ^{2} test statistic reduces to $X^{2}=\frac{\left(n_{01}-n_{10}\right)^{2}}{n_{01}+n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^{2}(\mathrm{df}=1)$.

For the example: $X^{2}=(20-9)^{2} / 29=4.17 \longrightarrow P=4.1 \%$.

An exact test

Condition on $\mathrm{n}_{01}+\mathrm{n}_{10}$.

Under $\mathrm{H}_{0}, \mathrm{n}_{01} \mid \mathrm{n}_{01}+\mathrm{n}_{10} \sim \operatorname{Binomial}\left(\mathrm{n}_{01}+\mathrm{n}_{10}, 1 / 2\right)$.

In R, use the function binom. test.
\longrightarrow For the example, $\mathrm{P}=6.1 \%$.

Paired data

	Paired data			Unpaired data			
	I-B	NI-B			1	NI	
I-A	9	9	18	A	18	82	100
NI-A	20	62	82	B	29	71	100
	29	71	100		47	153	200
$\rightarrow \mathrm{P}=6.1 \%$				$\rightarrow \mathrm{P}=9.5 \%$			

\longrightarrow Taking appropriate account of the "pairing" is important!

Deviations from Random Coil Behaviour

Are there site-specific deviations from random coil dimensions?
Förster Resonance Energy Transfer enables us to measure the distance between two dye molecules within a certain range. This can be used to study site-specific deviations from random coil dimensions in highly denatured peptides.

Deviations from Random Coil Behaviour

Deviations from Random Coil Behaviour

We have two underlying distributions for the green and red photons:

- One stemming from a peptide only having a donor dye.
- One stemming from a peptide being properly tagged with a donor and an acceptor dye.

Assume a photon has probability p_{0} of being red in the former situation, and p_{1} in the latter.

Deviations from Random Coil Behaviour

Deviations from Random Coil Behaviour

Assume we observe n_{i} photons at time point i. Then the number of red photons is simply Bernoulli $\left(n_{i}, p_{i}\right)$, where p_{i} is either p_{0} or p_{1}. Assume that the probability of observing photons from a peptide without an acceptor dye at any time is p, independent of the total number of photons observed. Let X be the number of red photons. Then

$$
\begin{aligned}
P\left(X=x_{i} \mid n_{i}\right) & =P\left(X=x_{i} \mid n_{i}, p_{0}\right) \times p+P\left(X=x_{i} \mid n_{i}, p_{1}\right) \times(1-p) \\
& =\binom{n_{i}}{x_{i}} p_{0}^{x_{i}}\left(1-p_{0}\right)^{n_{i}-x_{i}} \times p+\binom{n_{i}}{x_{i}} p_{1}^{x_{i}}\left(1-p_{1}\right)^{n_{i}-x_{i}} \times(1-p),
\end{aligned}
$$

and hence

$$
L\left(p, p_{0}, p_{1}\right)=\prod_{i=1}^{N}\left[\binom{n_{i}}{x_{i}} p_{0}^{x_{i}}\left(1-p_{0}\right)^{n_{i}-x_{i}} \times p+\binom{n_{i}}{x_{i}} p_{1}^{x_{i}}\left(1-p_{1}\right)^{n_{i}-x_{i}} \times(1-p)\right] .
$$

Deviations from Random Coil Behaviour

Deviations from Random Coil Behaviour

Deviations from Random Coil Behaviour

