Statistical tests

- Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)
- Form a test statistic for which large values indicate a departure from the hypothesis.
- Compare the observed value of the statistic to its distribution under the null hypothesis.

Paired t-test

Pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{\mathrm{n}}, Y_{\mathrm{n}}\right)$ independent.
$X_{\mathrm{i}} \sim \operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma_{\mathrm{A}}\right) \quad Y_{\mathrm{i}} \sim \operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma_{\mathrm{B}}\right)$
Test $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$

Paired t-test: $D_{\mathrm{i}}=Y_{\mathrm{i}}-X_{\mathrm{i}}$
$\longrightarrow D_{1}, \ldots, D_{\mathrm{n}} \sim$ iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}-\mu_{\mathrm{A}}, \sigma_{\mathrm{D}}\right)$

Sample mean \bar{D}; sample $S D s_{D}$

$$
\longrightarrow \mathrm{T}=\bar{D} /\left(\mathrm{s}_{\mathrm{D}} / \sqrt{\mathrm{n}}\right)
$$

Compare to a t distribution with $\mathrm{n}-1$ d.f.

Example

Sign test

Suppose we are concerned about the normal assumption.
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{\mathrm{n}}, Y_{\mathrm{n}}\right)$ independent.
Test H_{0} : X's and Y's have the same distribution
Another statistic: $\mathrm{S}=\#\left\{i: X_{\mathrm{i}}<Y_{\mathrm{i}}\right\}=\#\left\{i: D_{\mathrm{i}}>0\right\}$
(the number of pairs for which $X_{\mathrm{i}}<Y_{\mathrm{i}}$)
\longrightarrow Under $\mathrm{H}_{0}, \mathrm{~S} \sim$ Binomial(n, $\left.\mathrm{p}=0.5\right)$
Suppose $\mathrm{S}_{\mathrm{obs}}>\mathrm{n} / 2$.
\longrightarrow The P-value is

$$
\left.2 \times \operatorname{Pr}\left(S \geq S_{\text {obs }} \mid H_{0}\right)=2 *(1 \text {-pbinom(Sobs- } 1, n, 0.5)\right)
$$

Example

For our example, 8 out of 11 pairs had $Y_{\mathrm{i}}>X_{\mathrm{i}}$.

P-value $=2 *(1-\operatorname{pbinom}(7,11,0.5))=23 \%$
\longrightarrow Compare this to $\mathrm{P}=3 \%$ for the t -test!

Signed Rank test

Another "nonparametric" test.
This one is also called the Wilcoxon signed rank test.
Rank the differences according to their absolute values.
$R=$ sum of ranks of positive (or negative) values

D	28.6	-5.3	13.5	-12.9	37.3	25.0	5.1	34.6	-12.1	9.0	39.4
rank	8	2	6	5	10	7	1	9	4	3	11

$R=2+4+5=11$
Compare this to the distribution of R when each rank has an equal chance of being positive or negative.

In R: wilcox.test(d) $\longrightarrow P=0.054$

Permutation test

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{\mathrm{n}}, Y_{\mathrm{n}}\right) \longrightarrow \mathrm{T}_{\text {obs }}$

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and Y; if tails, do not switch.)
- Compare the observed T statistic to the distribution of the T-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the X's and Y's have the same distribution).

Actual data:
(117.3,145.9) (100.1,94.8) (94.5,108.0) (135.5,122.6) (92.9,130.2) (118.9,143.9)
$(144.8,149.9)(103.9,138.5)(103.8,91.7)(153.6,162.6)(163.1,202.5) \longrightarrow \mathrm{T}_{\text {obs }}=2.50$
Example shuffled data:
(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9)
$(144.8,149.9)(138.5,103.9)(103.8,91.7)(162.6,153.6)(163.1,202.5) \longrightarrow T^{\star}=0.19$

Permutation distribution

P-value $=\operatorname{Pr}\left(\left|\mathrm{T}^{\star}\right| \geq\left|\mathrm{T}_{\text {obs }}\right|\right)$
\longrightarrow Small n: Look at all 2^{n} possible flips
\longrightarrow Large n : Look at a sample (w/ repl) of 1000 such flips
Example data:
All 2^{11} permutations: $P=0.037$; sample of 1000 : $P=0.040$.

Paired comparisons

At least four choices:

- Paired t-test
- Sign test
- Signed rank test
- Permutation test with the t -statistic

Which to use?

- Paired t-test depends on the normality assumption
- Sign test is pretty weak
- Signed rank test ignores some information
- Permutation test is recommended

The fact that the permutation distribution of the t-statistic is generally well-approximated by a distribution recommends the ordinary t -test. But if you can estimate the permutation distribution, do it.

2-sample t-test

$X_{1}, \ldots, X_{\mathrm{n}}$ iid $\operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma\right)$
$Y_{1}, \ldots, Y_{\mathrm{m}}$ iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma\right)$
Test $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$

Test statistic: $\mathrm{T}=\frac{\bar{X}-\bar{Y}}{\mathrm{~s}_{\rho} \sqrt{\frac{1}{n}+\frac{1}{m}}} \quad$ where $\quad \mathrm{s}_{\mathrm{p}}=\sqrt{\frac{\mathrm{s}_{\mathrm{A}}^{2}(n-1)+\mathrm{s}_{\mathrm{B}}^{2}(m-1)}{n+m-2}}$
\longrightarrow Compare to the t distribution with $n+m-2$ d.f.

Example

$\begin{array}{lll}\bar{X}=47.5 & \mathrm{~s}_{\mathrm{A}}=10.5 & \mathrm{n}=6 \\ \bar{Y}=74.3 & \mathrm{~s}_{\mathrm{B}}=20.6 & \mathrm{~m}=9\end{array}$
$\mathrm{S}_{\mathrm{p}}=17.4 \quad \mathrm{~T}=-2.93$
$\longrightarrow P=2 * \operatorname{pt}(-2.93,6+9-2)=0.011$.

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest ($1,2, \ldots, n+m$)
R = sum of ranks for X's

X	Y	rank
35.0		1
38.2		2
43.3		3
	46.8	4
	49.7	5
50.0		6
	51.9	7
57.1		8
61.2		9
	74.1	10
	75.1	11
	84.5	12
	90.0	13
	95.1	14
	101.5	15

(Also known as the Mann-Whitney Test)

$$
\begin{aligned}
& R=1+2+3+6+8+9=29 \\
& \text { P-value }=0.026 \\
& \longrightarrow \text { use wilcox.test }()
\end{aligned}
$$

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically

Permutation test

X or Y	group
X_{1}	1
X_{2}	1
:	1
X_{n}	1
Y_{1}	2
Y_{2}	2
:	2
Y_{m}	

Group status shuffled
Compare the observed t -statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

P-value $=\operatorname{Pr}\left(\left|\mathrm{T}^{\star}\right| \geq\left|\mathrm{T}_{\text {obs }}\right|\right)$
\longrightarrow Small n \& m: Look at all $\binom{n+m}{n}$ possible shuffles
\longrightarrow Large $n \& m$: Look at a sample (w/ repl) of 1000 such shuffles

Example data:
All 5005 permutations: $P=0.015$; sample of 1000: $P=0.013$.

Estimating the permutation P-value

Let P be the true P -value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.
$\longrightarrow \hat{\mathrm{P}}=\frac{X}{N} \quad$ where $X \sim \operatorname{Binomial}(\mathrm{~N}, \mathrm{P})$
$\longrightarrow E(\hat{P})=P \quad S D(\hat{P})=\sqrt{\frac{P(1-P)}{N}}$

If the "true" P-value was $P=5 \%$, and we do $N=1000$ shuffles: $S D(\hat{P})=0.7 \%$.

Summary

The t-test relies on a normality assumption.
If this is a worry, consider:

- Paired data:
- Sign test
- Signed rank test
- Permutation test
- Unpaired data:
- Rank-sum test
- Permutation test
\longrightarrow The crucial assumption is independence!
The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.

