#### **Statistical tests**

- Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)
- Form a test statistic for which large values indicate a departure from the hypothesis.
- Compare the observed value of the statistic to its distribution under the null hypothesis.

#### **Paired t-test**

 $\begin{array}{ll} \text{Pairs} \ (\pmb{X}_1, \, \pmb{Y}_1), \dots, (\pmb{X}_n, \, \pmb{Y}_n) \text{ independent.} \\ & \pmb{X}_i \sim \text{Normal}(\mu_{\mathsf{A}}, \sigma_{\mathsf{A}}) \qquad \pmb{Y}_i \sim \text{Normal}(\mu_{\mathsf{B}}, \sigma_{\mathsf{B}}) \end{array}$ 

Test  $H_0: \mu_A = \mu_B$  vs  $H_a: \mu_A \neq \mu_B$ 

Paired t-test:  $D_i = Y_i - X_i$  $\longrightarrow D_1, \dots, D_n \sim \text{iid Normal}(\mu_B - \mu_A, \sigma_D)$ 

Sample mean  $\overline{D}$ ; sample SD s<sub>D</sub>

 $\longrightarrow T = \bar{D}/(s_D/\sqrt{n})$ 

Compare to a t distribution with n - 1 d.f.

#### Example



 $\bar{D} = 14.7$  s<sub>D</sub> = 19.6 n = 11

T = 2.50 P = 2 \* (1 - pt(2.50, 10)) = 0.031

# Sign test

Suppose we are concerned about the normal assumption.  $(X_1, Y_1), \ldots, (X_n, Y_n)$  independent.

Test  $H_0$  : X's and Y's have the same distribution

Another statistic:  $S = #\{i : X_i < Y_i\} = #\{i : D_i > 0\}$ (the number of pairs for which  $X_i < Y_i$ )

 $\longrightarrow$  Under H<sub>0</sub>, S ~ Binomial(n, p=0.5)

Suppose  $S_{obs} > n/2$ .

 $\longrightarrow$  The P-value is

 $2 \times Pr(S \ge S_{obs} | H_0) = 2*(1-pbinom(Sobs-1,n,0.5))$ 

### Example

For our example, 8 out of 11 pairs had  $Y_i > X_i$ .

P-value =  $2 \times (1-pbinom(7,11,0.5)) = 23\%$ 

 $\rightarrow$  Compare this to P = 3% for the t-test!

## **Signed Rank test**

Another "nonparametric" test.

This one is also called the Wilcoxon signed rank test.

Rank the differences according to their absolute values.

R = sum of ranks of positive (or negative) values

D 28.6 -5.3 13.5 -12.9 37.3 25.0 5.1 34.6 -12.1 9.0 39.4 rank 8 2 6 5 10 7 1 9 4 3 11

R = 2 + 4 + 5 = 11

Compare this to the distribution of R when each rank has an equal chance of being positive or negative.

In R: wilcox.test(d)  $\longrightarrow$  P = 0.054

## **Permutation test**

 $(\textbf{\textit{X}}_1, \textbf{\textit{Y}}_1), \ldots, (\textbf{\textit{X}}_n, \textbf{\textit{Y}}_n) \longrightarrow \textbf{T}_{obs}$ 

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and Y; if tails, do not switch.)
- Compare the observed T statistic to the distribution of the T-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the X's and Y's have the same distribution).

#### Actual data:

(117.3,145.9) (100.1,94.8) (94.5,108.0) (135.5,122.6) (92.9,130.2) (118.9,143.9)

(144.8,149.9) (103.9,138.5) (103.8,91.7) (153.6,162.6) (163.1,202.5)  $\longrightarrow T_{obs}$  = 2.50

#### Example shuffled data:

(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9) (144.8,149.9) (138.5,103.9) (103.8,91.7) (162.6,153.6) (163.1,202.5)  $\longrightarrow T^* = 0.19$ 

### **Permutation distribution**



 $P\text{-value} = Pr(|\mathsf{T}^{\star}| \geq |\mathsf{T}_{obs}|)$ 

- $\longrightarrow$  Small n: Look at all 2<sup>n</sup> possible flips
- $\longrightarrow$  Large n: Look at a sample (w/ repl) of 1000 such flips

Example data:

All  $2^{11}$  permutations: P = 0.037; sample of 1000: P = 0.040.

# **Paired comparisons**

At least four choices:

- Paired t-test
- Sign test
- Signed rank test
- Permutation test with the t-statistic

Which to use?

- Paired t-test depends on the normality assumption
- Sign test is pretty weak
- Signed rank test ignores some information
- Permutation test is recommended

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.

#### **2-sample t-test**

 $X_1, \ldots, X_n$  iid Normal( $\mu_A, \sigma$ )  $Y_1, \ldots, Y_m$  iid Normal( $\mu_B, \sigma$ )

Test  $H_0: \mu_A = \mu_B$  vs  $H_a: \mu_A \neq \mu_B$ 

Test statistic: T = 
$$\frac{\overline{X} - \overline{Y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 where  $s_p = \sqrt{\frac{s_A^2(n-1) + s_B^2(m-1)}{n+m-2}}$ 

 $\longrightarrow$  Compare to the t distribution with n + m – 2 d.f.

#### Example



- $\overline{X} = 47.5$  s<sub>A</sub> = 10.5 n = 6
- $\overline{Y} = 74.3$  s<sub>B</sub> = 20.6 m = 9

 $s_p = 17.4$  T = -2.93

 $\rightarrow$  P = 2\*pt(-2.93, 6+9-2) = 0.011.

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m)

R = sum of ranks for X's

(Also known as the Mann-Whitney Test)

| Х    | Y     | rank |
|------|-------|------|
| 35.0 |       | 1    |
| 38.2 |       | 2    |
| 43.3 |       | 3    |
|      | 46.8  | 4    |
|      | 49.7  | 5    |
| 50.0 |       | 6    |
|      | 51.9  | 7    |
| 57.1 |       | 8    |
| 61.2 |       | 9    |
|      | 74.1  | 10   |
|      | 75.1  | 11   |
|      | 84.5  | 12   |
|      | 90.0  | 13   |
|      | 95.1  | 14   |
|      | 101 5 | 15   |

R = 1 + 2 + 3 + 6 + 8 + 9 = 29

P-value = 0.026

 $\rightarrow$  use wilcox.test()

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically

#### **Permutation test**

| X or Y | group |                      |   | X or Y                | group |                         |
|--------|-------|----------------------|---|-----------------------|-------|-------------------------|
| $X_1$  | 1     |                      |   | $X_1$                 | 2     |                         |
| $X_2$  | 1     |                      |   | <b>X</b> 2            | 2     |                         |
| ł      | 1     |                      |   | i                     | 1     |                         |
| Xn     | 1     | $ ightarrow T_{obs}$ |   | Xn                    | 2     | $\rightarrow T^{\star}$ |
| $Y_1$  | 2     |                      |   | $Y_1$                 | 1     |                         |
| $Y_2$  | 2     |                      |   | <b>Y</b> <sub>2</sub> | 2     |                         |
| ł      | 2     |                      |   | i                     | 1     |                         |
| Ym     | 2     |                      | _ | Ym                    | 1     |                         |

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

### **Permutation distribution**



 $P\text{-value} = Pr(|\mathsf{T}^{\star}| \geq |\mathsf{T}_{obs}|)$ 

- $\longrightarrow$  Small n & m: Look at all  $\binom{n+m}{n}$  possible shuffles
- $\longrightarrow$  Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:

All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.

## **Estimating the permutation P-value**

Let P be the true P-value (if we do *all possible* shuffles).

Do N shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.

$$\longrightarrow \hat{\mathsf{P}} = \frac{X}{\mathsf{N}}$$
 where  $X \sim \text{Binomial}(\mathsf{N},\mathsf{P})$ 

$$\longrightarrow E(\hat{P}) = P \qquad SD(\hat{P}) = \sqrt{\frac{P(1-P)}{N}}$$

If the "true" P-value was P = 5%, and we do N=1000 shuffles: SD( $\hat{P}$ ) = 0.7%.

## Summary

The t-test relies on a normality assumption. If this is a worry, consider:

- Paired data:
  - Sign test
  - Signed rank test
  - Permutation test
- Unpaired data:
  - Rank-sum test
  - Permutation test
- $\rightarrow$  The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.