
Statistical tests

• Gather data to assess some hypothesis (e.g., does this
treatment have an effect on this outcome?)

• Form a test statistic for which large values indicate a de-
parture from the hypothesis.

• Compare the observed value of the statistic to its distribu-
tion under the null hypothesis.



Paired t-test

Pairs (X 1,Y 1), . . . , (X n,Y n) independent.
X i ∼ Normal(µA, σA) Y i ∼ Normal(µB, σB)

Test H0 : µA = µB vs Ha : µA ̸= µB

Paired t-test: Di = Y i − X i

−→ D1, . . . ,Dn ∼ iid Normal(µB − µA,σD)

Sample mean D̄; sample SD sD
−→ T = D̄/(sD/

√
n)

Compare to a t distribution with n – 1 d.f.



Example
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D̄ = 14.7 sD = 19.6 n = 11

T = 2.50 P = 2*(1-pt(2.50,10)) = 0.031



Sign test

Suppose we are concerned about the normal assumption.
(X 1,Y 1), . . . , (X n,Y n) independent.

Test H0 : X’s and Y’s have the same distribution

Another statistic: S = #{i : X i < Y i} = #{i : Di > 0}

(the number of pairs for which X i < Y i)

−→ Under H0, S ∼ Binomial(n, p=0.5)

Suppose Sobs > n/2.
−→ The P-value is

2× Pr(S≥ Sobs | H0) = 2*(1-pbinom(Sobs-1,n,0.5))



Example

For our example, 8 out of 11 pairs had Y i > X i.

P-value = 2 * (1-pbinom(7,11,0.5)) = 23%

−→ Compare this to P = 3% for the t-test!



Signed Rank test

Another “nonparametric” test.
This one is also called the Wilcoxon signed rank test.

Rank the differences according to their absolute values.
R = sum of ranks of positive (or negative) values

D 28.6 –5.3 13.5 –12.9 37.3 25.0 5.1 34.6 –12.1 9.0 39.4

rank 8 2 6 5 10 7 1 9 4 3 11

R = 2 + 4 + 5 = 11

Compare this to the distribution of R when each rank has an equal
chance of being positive or negative.

In R: wilcox.test(d) −→ P = 0.054



Permutation test

(X 1,Y 1), . . . , (X n,Y n) −→ Tobs
• Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and
Y; if tails, do not switch.)

• Compare the observed T statistic to the distribution of the T-statistic when the
pairs are flipped at random.

• If the observed statistic is extreme relative to this permutation/randomization
distribution, then reject the null hypothesis (that the X’s and Y’s have the same
distribution).

Actual data:
(117.3,145.9) (100.1,94.8) (94.5,108.0) (135.5,122.6) (92.9,130.2) (118.9,143.9)
(144.8,149.9) (103.9,138.5) (103.8,91.7) (153.6,162.6) (163.1,202.5) −→ Tobs = 2.50

Example shuffled data:
(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9)
(144.8,149.9) (138.5,103.9) (103.8,91.7) (162.6,153.6) (163.1,202.5) −→ T⋆ = 0.19



Permutation distribution

−5 −4 −3 −2 −1 0 1 2 3 4 5

P-value = Pr(|T⋆| ≥ |Tobs|)

−→ Small n: Look at all 2n possible flips
−→ Large n: Look at a sample (w/ repl) of 1000 such flips

Example data:
All 211 permutations: P = 0.037; sample of 1000: P = 0.040.



Paired comparisons

At least four choices:
• Paired t-test
• Sign test
• Signed rank test
• Permutation test with the t-statistic

Which to use?
• Paired t-test depends on the normality assumption
• Sign test is pretty weak
• Signed rank test ignores some information
• Permutation test is recommended

The fact that the permutation distribution of the t-statistic is gener-
ally well-approximated by a t distribution recommends the ordinary
t-test. But if you can estimate the permutation distribution, do it.



2-sample t-test

X 1, . . . ,X n iid Normal(µA, σ) Y 1, . . . ,Ym iid Normal(µB, σ)

Test H0 : µA = µB vs Ha : µA ̸= µB

Test statistic: T = X − Y

sp
√

1
n +

1
m

where sp =
√

s2A(n−1)+s2B(m−1)
n+m−2

−→ Compare to the t distribution with n + m – 2 d.f.



Example
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X = 47.5 sA = 10.5 n = 6
Y = 74.3 sB = 20.6 m = 9

sp = 17.4 T = –2.93

−→ P = 2*pt(-2.93,6+9-2) = 0.011.



Wilcoxon rank-sum test

Rank the X’s and Y’s from smallest to largest (1, 2, . . . , n+m)
R = sum of ranks for X’s (Also known as the Mann-Whitney Test)

X Y rank
35.0 1
38.2 2
43.3 3

46.8 4
49.7 5

50.0 6
51.9 7

57.1 8
61.2 9

74.1 10
75.1 11
84.5 12
90.0 13
95.1 14
101.5 15

R = 1 + 2 + 3 + 6 + 8 + 9 = 29

P-value = 0.026

−→ use wilcox.test()

Note: The distribution of R (given
that X’s and Y’s have the same
dist’n) is calculated numerically



Permutation test

X or Y group
X 1 1
X 2 1
... 1
X n 1 → Tobs
Y 1 2
Y 2 2
... 2
Ym 2

X or Y group
X 1 2
X 2 2
... 1
X n 2 → T⋆

Y 1 1
Y 2 2
... 1
Ym 1

Group status shuffled

Compare the observed t-statistic to the distribution obtained by
randomly shuffling the group status of the measurements.



Permutation distribution

−4 −3 −2 −1 0 1 2 3 4 5 6 7

P-value = Pr(|T⋆| ≥ |Tobs|)

−→ Small n & m: Look at all
(n+m

n
)

possible shuffles
−→ Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:
All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.



Estimating the permutation P-value

Let P be the true P-value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after
shuffling is bigger or equal to the observed statistic.

−→ P̂ = X
N where X ∼ Binomial(N,P)

−→ E(P̂) = P SD(P̂) =
√

P(1−P)
N

If the “true” P-value was P = 5%, and we do N=1000 shuffles:
SD(P̂) = 0.7%.



Summary

The t-test relies on a normality assumption.
If this is a worry, consider:

• Paired data:
◦ Sign test
◦ Signed rank test
◦ Permutation test

• Unpaired data:
◦ Rank-sum test
◦ Permutation test

−→ The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often
closely approximated by a t distribution is good support for just
doing t-tests.


