

Hypothetical example (no differential expression):

- Microarray with 10,000 genes.
- Calculate 10,000 p-values.
- Call genes "significant" if p-value < 0.05.
- Expected Number of False Positives: 10,000 × 0.05 = 500.

- Many procedures have been developed to control the Family Wise Error Rate (the probability of at least one type I error).
- Two general types of FWER corrections:
 - Single step: equivalent adjustments made to each p-value.
 - Sequential: adaptive adjustment made to each p-value.

Simple single step approach: Bonferroni.

- Very simple method for ensuring that the overall type I error rate of α is maintained when performing m hypothesis tests.
- Rejects any hypothesis with p-value $\leq \alpha/m$.
- The Bonferroni adjusted p-value is

$$p_j^{Bonf} = \min\left\{m \times p_j, 1\right\}$$

For example, if we want to have an experiment wide type I error rate of 0.05 when we perform 10,000 hypothesis tests, we needed a p-value of 0.05 / 10,000 = 5×10⁻⁶ to declare significance.

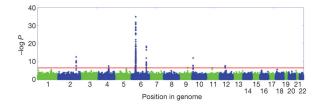
Simple sequential method: Holm-Bonferroni.

- Order the unadjusted p-values such that $p_1 \leq p_2 \leq \cdots \leq p_m$.
- Holm-Bonferroni uniformly delivers more power than the Bonferroni correction by testing only the most extreme p value against the strictest criterion, and the others against progressively less strict criteria.
- The Holm adjusted p-value is

$$p_i^{Holm} = \min \{m - j + 1 \times p_j, 1\}$$

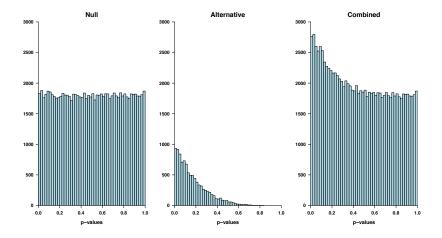
The point here is that we do not multiply every p_j by the same factor m.

- The FWER is appropriate when you want to guard against any false positives.
- For example, this is usually done in genome-wide association studies.



- The general null hypothesis (that all the null hypotheses are true) is rarely of interest.
- There is a high probability of type 2 errors, i.e. of not rejecting the general null hypothesis when important effects exist.

- In many cases (particularly in genomics) we can live with a certain number of false positives.
- This is for example the case in gene expression studies, when we suspect a fair number of genes to be differentially expressed.
- In these cases, the more relevant quantity to control is the False Discovery Rate (FDR).
- The FDR is designed to control the proportion of false positives among the set of rejected hypotheses.



Declared \downarrow	H_0 is true	H _a is true	Total
Significant	V	S	R
Non-significant	U	Т	m – R
Total	m ₀	m - m ₀	m

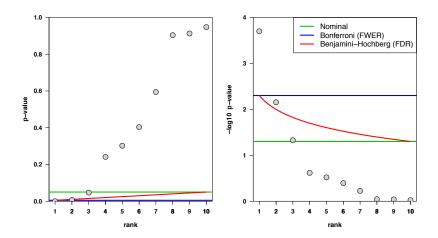
- ► Bonferroni and such control the family-wise error rate.
 - \rightarrow V/(V+U).
- The FDR controls the false positive rate.

 \rightarrow V/(V+S).

Benjamini and Hochberg FDR.

To control FDR at level δ :

- Order the unadjusted p-values: $p_1 \leq p_2 \leq \cdots \leq p_m$.
- Find the test with the highest rank j for which the p-value p_j is less than or equal to (j / m) × δ.
- Declare the tests of rank 1, 2, ..., j as significant.



Difference in interpretation:

Suppose 550 out of 10,000 genes are significant at the 0.05 level.

► False Discovery Rate < 0.05:

Expect $0.05 \times 550 = 27.5$ false positives.

Family Wise Error Rate < 0.05:</p>

The probability of at least 1 false positive < 0.05.

In most settings, the latter is extremely unlikely, unless the sample size is huge!

John Storey's positive FDR (pFDR):

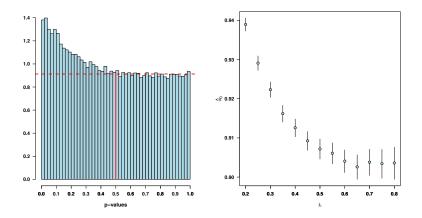
$$FDR = E\left[\frac{V}{R} \mid R > 0\right] \times P(R > 0)$$

$$pFDR = E\left[\frac{V}{R} \mid R > 0\right]$$

- Since P(R > 0) is ∼ 1 in most genomics experiments, the FDR and the pFDR are very similar.
- Omitting P(R > 0) facilitated the development of a measure of significance in terms of the FDR for each hypothesis.

Q-values:

- The q-value is defined as the minimum FDR that can be attained when calling that gene significant (i.e., expected proportion of false positives incurred when calling that gene significant).
- The estimated q-value is a function of the p-value for that test and the distribution of the entire set of p-values from the family of tests being considered.
- In testing for differential expression, if a gene has a q-value of 0.10 it means that we can expect 10% of genes that show p-values at least as small as this gene to be false positives.



	р	q	p.bonf
1	1.92e-06	0.11814	0.19188
2	3.90e-06	0.11814	0.38955
3	8.43e-06	0.11814	0.84317
4	9.35e-06	0.11814	0.93497
5	1.11e-05	0.11814	1.00000
6	1.14e-05	0.11814	1.00000
7	1.14e-05	0.11814	1.00000
8	1.22e-05	0.11814	1.00000
9	1.24e-05	0.11814	1.00000
10	1.44e-05	0.11814	1.00000
11	1.44e-05	0.11814	1.00000
12	1.64e-05	0.11997	1.00000
13	1.76e-05	0.11997	1.00000
14	1.97e-05	0.11997	1.00000
15	1.99e-05	0.11997	1.00000
16	2.53e-05	0.14035	1.00000
17	2.64e-05	0.14035	1.00000
18	3.03e-05	0.14795	1.00000
19	3.11e-05	0.14795	1.00000
20	3.67e-05	0.15919	1.00000

