10 Estimable Functions and the Gauss-Markov Theorem

A quick review:

- **10.1 Definition:** We defined the Best Linear Unbiased Estimate (BLUE) of a parameter θ based on data Y
 - (a) is a linear combination of \mathbf{Y} (i. e. equals $\mathbf{b'Y}$),
 - (b) is unbiased (i. e. $E[\mathbf{b'Y}] = \theta$),
 - (c) has the smallest variance among all such unbiased linear estimators.
- **10.2 Theorem:** For any linear combination $\mathbf{c}' E[\mathbf{Y}]$, $\mathbf{c}' \hat{\mathbf{Y}}$ is the BLUE of $\mathbf{c}' E[\mathbf{Y}]$, where $\hat{\mathbf{Y}}$ is the least-squares orthogonal projection of \mathbf{Y} .
- **10.3 Theorem:** If rank $(\mathbf{X}_{n \times p}) = p$, then $\mathbf{a}' \hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}' \boldsymbol{\beta}$ for any \mathbf{a} .
- **10.4** Note: In the less than full rank case, there is not a unique way to estimate β . However, we will see that certain linear combinations of the components of β can be unbiasedly estimated.
- 10.5 Definition: A linear combination $\mathbf{a}'\boldsymbol{\beta}$ is estimable if it has a linear unbiased estimate, i.e., $\mathbf{b}'\mathbf{Y}$ for some **b** such that $E[\mathbf{b}'\mathbf{Y}] = \mathbf{a}'\boldsymbol{\beta}$ for all $\boldsymbol{\beta}$.
- **10.6 Theorem:** $\mathbf{a}'\boldsymbol{\beta}$ is estimable if and only if $\mathbf{a} \in \mathcal{R}(\mathbf{X}')$.
- **10.7 Theorem:** If $\mathbf{a}'\boldsymbol{\beta}$ is estimable, there is a unique $\mathbf{b}_* \in \mathcal{R}(\mathbf{X})$ such that $\mathbf{a} = \mathbf{X}'\mathbf{b}_*$.
- **10.8** Note: In the full rank case any $\mathbf{a}'\boldsymbol{\beta}$ is estimable. In particular, $\mathbf{a}'\hat{\boldsymbol{\beta}} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \equiv \mathbf{b}'\mathbf{Y}$ is a linear unbiased estimate of $\mathbf{a}'\boldsymbol{\beta}$. In this case we also know that $\mathbf{a}'\hat{\boldsymbol{\beta}}$ is the BLUE.
- **10.9 Theorem:** (Gauss-Markov): If $\mathbf{a}'\boldsymbol{\beta}$ is estimable, then
 - (a) $\mathbf{a}'\hat{\boldsymbol{\beta}}$ is unique (i.e. the same for all solutions $\hat{\boldsymbol{\beta}}$ to the normal equations),
 - (b) $\mathbf{a}'\hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}'\boldsymbol{\beta}$.
- 10.10 Theorem: If $\mathbf{a}'\boldsymbol{\beta}$ is estimable then $\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X} = \mathbf{a}'$ for any generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.
- 10.11 Theorem: If $\mathbf{a}'\boldsymbol{\beta}$ is estimable, then $\operatorname{var}(\mathbf{a}'\hat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{a}' (\mathbf{X}'\mathbf{X})^- \mathbf{a}$.