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5 Least Squares Estimation

Recall the linear model Y = X3 + ¢ :

Y Ti0 T11 v Tip-1 Bo €1
Ys Too o1 v Top-1 B €2
= . . . . . +
Y, Lno Tpl - Tpp-—1 ﬁpfl En

Definition: An estimate 3 is a least-squares estimate of 3 if it minimizes the length ||Y — X3]| over all 3.

Note: Let xg,X1,...,X,—1 be the columns of X. Then X3 = fyxo + ix1 + ... Bp—1%Xp—1 € R(X),
the range (column space) of X. Hence a least-squares estimate can be found by minimizing ||'Y — ul|| over

p € R(X).

~

Theorem: Y can be uniquely decomposed as Y =Y 4+ & where Y € R(X), é € [R(X)]*, and
[R(X)]* is the orthogonal complement of R(X) = {a : X'a = 0}.

Definition: Y (sometimes written as fv) is the orthogonal projection of Y onto R(X). It is also called the
fitted vector or vector of fitted values. The residual vectoris ¢ =Y — Y =Y — XB

/.

Theorem: The orthogonal projection solves the least-squares minimization problem.
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5.6 Theorem: A least squares estimate is a solution to the normal equations: XX3 = X'Y.

5.7 Definition: The residual sum of squares is defined by

RSS =é&e= (Y - XB)(Y -XB) =YY - BX'X.

5.8 Theorem: If rank(X"*P) = p, then rank(X'X) = p, so (X'X)~! exists. In this case the normal
equations have the unique solution R
B=XX)"X'Y.

The orthogonal projection is R K
Y = X3 = X(X'X)"'X'Y = PY,

where
P = X(X'X)"!X".

5.9 Theorem: Let rank(X"*P) =p, and P = X(X'X)"'X’. Then

(a) P and I — P are projection matrices.
(b) rank(I - P) =tr(I-P) =n —p.

(c) PX = X.

5.10 Note: P is projection onto R(X). I — P is projection onto [R(X)}*. The residual vector becomes
E=Y-Y=(1-P)Y,

and the residual sum of squares
RSS=¢e=Y'(I1-P)Y.

5.11 Definition: For A,, ., a generalized inverse of A is an n X m matrix A~ satisfying AA~™A = A.

5.12 Theorem: In general, the projection onto R(X) is PY, where P = X(X'X)~X'.



