## 5 Least Squares Estimation

Recall the linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$ :

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
x_{10} & x_{11} & \cdots & x_{1, p-1} \\
x_{20} & x_{21} & \cdots & x_{2, p-1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 0} & x_{n 1} & \cdots & x_{n, p-1}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p-1}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

5.1 Definition: An estimate $\hat{\boldsymbol{\beta}}$ is a least-squares estimate of $\boldsymbol{\beta}$ if it minimizes the length $\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|$ over all $\boldsymbol{\beta}$.
5.2 Note: Let $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p-1}$ be the columns of $\mathbf{X}$. Then $\mathbf{X} \boldsymbol{\beta}=\beta_{0} \mathbf{x}_{0}+\beta_{1} \mathbf{x}_{1}+\ldots \beta_{p-1} \mathbf{x}_{p-1} \in \mathcal{R}(\mathbf{X})$, the range (column space) of $\mathbf{X}$. Hence a least-squares estimate can be found by minimizing $\|\mathbf{Y}-\boldsymbol{\mu}\|$ over $\boldsymbol{\mu} \in \mathcal{R}(\mathbf{X})$.
5.3 Theorem: $\mathbf{Y}$ can be uniquely decomposed as $\mathbf{Y}=\hat{\mathbf{Y}}+\hat{\varepsilon}$ where $\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X}), \hat{\boldsymbol{\epsilon}} \in[\mathcal{R}(\mathbf{X})]^{\perp}$, and $[\mathcal{R}(\mathbf{X})]^{\perp}$ is the orthogonal complement of $\mathcal{R}(\mathbf{X})=\left\{\mathbf{a}: \mathbf{X}^{\prime} \mathbf{a}=\mathbf{0}\right\}$.
5.4 Definition: $\hat{\mathbf{Y}}$ (sometimes written as $\hat{\boldsymbol{\mu}}$ ) is the orthogonal projection of $\mathbf{Y}$ onto $\mathcal{R}(\mathbf{X})$. It is also called the fitted vector or vector of fitted values. The residual vector is $\hat{\boldsymbol{\varepsilon}}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}$.

5.5 Theorem: The orthogonal projection solves the least-squares minimization problem.

5.6 Theorem: A least squares estimate is a solution to the normal equations: $\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{Y}$.
5.7 Definition: The residual sum of squares is defined by

$$
R S S=\hat{\varepsilon}^{\prime} \hat{\varepsilon}=(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})=\mathbf{Y}^{\prime} \mathbf{Y}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}
$$

5.8 Theorem: If $\operatorname{rank}\left(\mathbf{X}^{n \times p}\right)=p$, then $\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=p$, so $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists. In this case the normal equations have the unique solution

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

The orthogonal projection is

$$
\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{P} \mathbf{Y}
$$

where

$$
\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
$$

5.9 Theorem: Let $\operatorname{rank}\left(\mathbf{X}^{n \times p}\right)=p$, and $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Then
(a) $\mathbf{P}$ and $\mathbf{I}-\mathbf{P}$ are projection matrices.
(b) $\operatorname{rank}(\mathbf{I}-\mathbf{P})=\operatorname{tr}(\mathbf{I}-\mathbf{P})=n-p$.
(c) $\mathbf{P X}=\mathbf{X}$.
5.10 Note: $\mathbf{P}$ is projection onto $\mathcal{R}(\mathbf{X})$. $\mathbf{I}-\mathbf{P}$ is projection onto $[\mathcal{R}(\mathbf{X})]^{\perp}$. The residual vector becomes

$$
\hat{\varepsilon}=\mathbf{Y}-\hat{\mathbf{Y}}=(\mathbf{I}-\mathbf{P}) \mathbf{Y}
$$

and the residual sum of squares

$$
R S S=\hat{\varepsilon}^{\prime} \hat{\varepsilon}=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{Y} .
$$

5.11 Definition: For $\mathbf{A}_{m \times n}$, a generalized inverse of $\mathbf{A}$ is an $n \times m$ matrix $\mathbf{A}^{-}$satisfying $\mathbf{A A}^{-} \mathbf{A}=\mathbf{A}$.
5.12 Theorem: In general, the projection onto $\mathcal{R}(\mathbf{X})$ is $\mathbf{P Y}$, where $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}$.

