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5 Least Squares Estimation

Recall the linear model Y = Xβ + ε :
Y1

Y2
...

Yn

 =


x10 x11 · · · x1,p−1

x20 x21 · · · x2,p−1
...

...
...

...
xn0 xn1 · · · xn,p−1




β0

β1
...

βp−1

 +


ε1

ε2
...

εn



5.1 Definition: An estimate β̂ is a least-squares estimate of β if it minimizes the length ||Y−Xβ|| over all β.

5.2 Note: Let x0,x1, . . . ,xp−1 be the columns of X. Then Xβ = β0x0 + β1x1 + . . . βp−1xp−1 ∈ R(X),
the range (column space) ofX. Hence a least-squares estimate can be found by minimizing ||Y−µ|| over
µ ∈ R(X).

5.3 Theorem: Y can be uniquely decomposed as Y = Ŷ + ε̂ where Ŷ ∈ R(X), ε̂ ∈ [R(X)]⊥, and
[R(X)]⊥ is the orthogonal complement of R(X) = {a : X′a = 0}.

5.4 Definition: Ŷ (sometimes written as µ̂) is the orthogonal projection of Y onto R(X). It is also called the
fitted vector or vector of fitted values. The residual vector is ε̂ = Y − Ŷ = Y − Xβ̂.
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5.5 Theorem: The orthogonal projection solves the least-squares minimization problem.
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5.6 Theorem: A least squares estimate is a solution to the normal equations: X′Xβ = X′Y.

5.7 Definition: The residual sum of squares is defined by

RSS = ε̂′ε̂ = (Y − Xβ̂)′(Y − Xβ̂) = Y′Y − β̂
′
X′Xβ̂.

5.8 Theorem: If rank(Xn×p) = p, then rank(X′X) = p, so (X′X)−1 exists. In this case the normal
equations have the unique solution

β̂ = (X′X)−1X′Y.

The orthogonal projection is
Ŷ = Xβ̂ = X(X′X)−1X′Y = PY,

where
P = X(X′X)−1X′.

5.9 Theorem: Let rank(Xn×p) = p, and P = X(X′X)−1X′. Then

(a) P and I − P are projection matrices.

(b) rank(I − P) = tr(I − P) = n − p.

(c) PX = X.

5.10 Note: P is projection onto R(X). I − P is projection onto [R(X)]⊥. The residual vector becomes

ε̂ = Y − Ŷ = (I − P)Y,

and the residual sum of squares
RSS = ε̂′ε̂ = Y′(I −P)Y.

5.11 Definition: ForAm×n, a generalized inverse of A is an n × m matrix A− satisfying AA−A = A.

5.12 Theorem: In general, the projection onto R(X) is PY, where P = X(X′X)−X′.


