7 Design Matrices of Less Than Full Rank

If $\mathbf{X}_{n \times p}$ has rank r < p, there is not a unique solution $\hat{\boldsymbol{\beta}}$ to the normal equations. We have three ways to find *a* solution $\hat{\boldsymbol{\beta}}$ and *the* orthogonal projection $\hat{\mathbf{Y}}$:

- 1. Reducing the model to one of full rank.
- 2. Finding a generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.
- 3. Imposing identifiability constraints.

7.1 Reducing the Model to One of Full Rank

Let X_1 consist of r linearly independent columns from X and let X_2 consist of the remaining columns. Then $X_2 = X_1 F$ because the columns of X_2 are linearly dependent on the columns of X_1 .

$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2) = (\mathbf{X}_1, \mathbf{X}_1 \mathbf{F}) = \mathbf{X}_1 (\mathbf{I}_{\mathbf{r} \times \mathbf{r}}, \mathbf{F}).$$

This is a special case of the factorization $\mathbf{X} = \mathbf{K}\mathbf{L}$, where rank $(\mathbf{K}_{n \times r}) = r$ and rank $(\mathbf{L}_{r \times p}) = r$. Now,

$$E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta} = \mathbf{K}\mathbf{L}\boldsymbol{\beta} = \mathbf{K}\boldsymbol{\alpha}.$$

Since **K** has full rank, the least squares estimate of α is $\hat{\alpha} = (\mathbf{K'K})^{-1}\mathbf{K'Y}$ and the orthogonal projection is $\hat{\mathbf{Y}} = \mathbf{K}\hat{\alpha} = \mathbf{K}(\mathbf{K'K})^{-1}\mathbf{K'Y}$. Therefore, $\mathbf{P} = \mathbf{K}(\mathbf{K'K})^{-1}\mathbf{K'}$, i.e. $\mathbf{P} = \mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'$.

7.1 Example: (One-way ANOVA with 2 groups).

$$\begin{pmatrix} Y_{11} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ \vdots \\ Y_{2n_2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{1n_1} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{2n_2} \end{pmatrix}$$

Let \mathbf{X}_1 consist of the first 2 columns of \mathbf{X} . Then

$$\mathbf{X} = \mathbf{X}_1 \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & -1 \end{array} \right)$$

and $\mathbf{X}\boldsymbol{\beta} = \mathbf{X}_1\boldsymbol{\alpha}$, where

$$\boldsymbol{\alpha} = \left(\begin{array}{c} \mu + \alpha_2 \\ \alpha_1 - \alpha_2 \end{array}\right).$$

Then

$$\hat{\boldsymbol{\alpha}} = \begin{pmatrix} n & n_1 \\ n_1 & n_1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \end{pmatrix} = \begin{pmatrix} n_2^{-1} & -n_2^{-1} \\ -n_2^{-1} & n_1^{-1} + n_2^{-1} \end{pmatrix} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{Y}_2 \\ \bar{Y}_1 - \bar{Y}_2 \end{pmatrix},$$

and hence $\hat{\mathbf{Y}} = \mathbf{X}_1 \hat{\boldsymbol{\alpha}} = (\bar{Y}_{1\cdot}, \dots, \bar{Y}_{1\cdot}, \bar{Y}_{2\cdot}, \dots, \bar{Y}_{2\cdot})'.$

7.2 Finding a Generalized Inverse $(X'X)^-$

Let $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$, where \mathbf{X}_1 consists of r linearly independent columns from \mathbf{X} . Then a generalized inverse of $\mathbf{X}'\mathbf{X}$ is

$$(\mathbf{X}'\mathbf{X})^{-} = \left(\begin{array}{cc} (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array}\right).$$

A solution to the normal equations is $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y}$ and $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y} = \mathbf{P}\mathbf{Y}$, where $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$. Note that this also gives $\mathbf{P} = \mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'$. This result is a special case of the following theorem:

7.2 Theorem: Let the matrix $\mathbf{W}_{p \times p}$ have rank r and be partitioned as

$$\mathbf{W} = \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right),$$

where A has rank r. Then a generalized inverse of W is

$$\mathbf{W}^- = \left(egin{array}{cc} \mathbf{A}^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}
ight).$$

7.3 Example: (One-way ANOVA with 2 groups, continued). We have

$$\mathbf{X}'\mathbf{X} = \left(\begin{array}{rrrr} n & n_1 & n_2 \\ n_1 & n_1 & 0 \\ n_2 & 0 & n_2 \end{array}\right).$$

If \mathbf{X}_1 consists of the first 2 columns of \mathbf{X} , then

$$(\mathbf{X}_1'\mathbf{X}_1)^{-1} = \begin{pmatrix} n & n_1 \\ n_1 & n_1 \end{pmatrix}^{-1} = \begin{pmatrix} n_2^{-1} & -n_2^{-1} \\ -n_2^{-1} & n_1^{-1} + n_2^{-1} \end{pmatrix}.$$

.

and generalized inverse of $\mathbf{X}'\mathbf{X}$ is

$$(\mathbf{X}'\mathbf{X})^{-} = \begin{pmatrix} n_2^{-1} & -n_2^{-1} & 0\\ -n_2^{-1} & n_1^{-1} + n_2^{-1} & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Now a solution to the normal equations is

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} n_2^{-1} & -n_2^{-1} & 0\\ -n_2^{-1} & n_1^{-1} + n_2^{-1} & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \\ \sum_j Y_{2j} \end{pmatrix} = \begin{pmatrix} \bar{Y}_2 \\ \bar{Y}_1 - \bar{Y}_2 \\ 0 \end{pmatrix},$$

and $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = (\bar{Y}_{1}, \dots, \bar{Y}_{1}, \bar{Y}_{2}, \dots, \bar{Y}_{2})'$, as before.

7.3 Imposing Identifiability Constraints

Impose s = p - r constraints on β to make β uniquely determined (identifiable), i.e. such that for any $\theta \in \mathcal{R}(\mathbf{X})$, there is a unique β satisfying

$$\mathbf{X}oldsymbol{eta}=oldsymbol{ heta}$$
 and $\mathbf{H}oldsymbol{eta}=\mathbf{0}.$

This can be written

$$\left(egin{array}{c} m{ heta} \\ m{0} \end{array}
ight) = \left(egin{array}{c} \mathbf{X} \\ \mathbf{H} \end{array}
ight) m{eta} \equiv \mathbf{G} m{eta}$$

Now when is there a unique solution?

- 7.4 Theorem: A unique solution exists if and only if G has rank p and the rows of H are linearly independent of the rows of X.
- **7.5 Theorem:** A unique solution exists if and only if **G** has rank p and **H** has rank p r.

To estimate β , we solve $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta}$ and $\mathbf{H}\hat{\beta} = \mathbf{0}$, i.e. we solve the augmented normal equations $\mathbf{X}'\mathbf{X}\hat{\beta} = \mathbf{X}'\mathbf{Y}$ and $\mathbf{H}'\mathbf{H}\hat{\beta} = \mathbf{0}$, i.e. $(\mathbf{X}'\mathbf{X} + \mathbf{H}'\mathbf{H})\hat{\beta} = (\mathbf{G}'\mathbf{G})\hat{\beta} = \mathbf{X}'\mathbf{Y}$. Therefore,

$$\hat{\boldsymbol{\beta}} = (\mathbf{G}'\mathbf{G})^{-1}\mathbf{X}'\mathbf{Y}$$
, and $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{P}\mathbf{Y}$, where $\mathbf{P} = \mathbf{X}(\mathbf{G}'\mathbf{G})^{-1}\mathbf{X}'$.

7.6 Example: (One-way ANOVA with 2 groups, cont.). Set $\alpha_1 + \alpha_2 = 0$, i.e.

$$\mathbf{H}\boldsymbol{\beta} \equiv (0,1,1) \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = 0.$$

Suppose $n_1 = n_2 = m$. Then it can be shown that

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} \bar{Y}_{..} \\ \frac{1}{2}(\bar{Y}_{1.} - \bar{Y}_{2.}) \\ \frac{1}{2}(\bar{Y}_{2.} - \bar{Y}_{1.}) \end{pmatrix}$$

satisfies the normal equations, and clearly satisfies the constraint $\alpha_1 + \alpha_2 = 0$. Therefore, we have as before $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = (\bar{Y}_{1.}, \dots, \bar{Y}_{1.}, \bar{Y}_{2.}, \dots, \bar{Y}_{2.})'$.