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7 Design Matrices of Less Than Full Rank

If Xn×p has rank r < p, there is not a unique solution β̂ to the normal equations. We have three ways to
find a solution β̂ and the orthogonal projection Ŷ:

1. Reducing the model to one of full rank.

2. Finding a generalized inverse (X′X)−.

3. Imposing identifiability constraints.

7.1 Reducing the Model to One of Full Rank

Let X1 consist of r linearly independent columns from X and let X2 consist of the remaining columns.
Then X2 = X1F because the columns of X2 are linearly dependent on the columns ofX1.

X = (X1,X2) = (X1,X1F) = X1(Ir×r,F).

This is a special case of the factorization X = KL, where rank(Kn×r) = r and rank(Lr×p) = r. Now,

E[Y] = Xβ = KLβ = Kα.

SinceK has full rank, the least squares estimate of α is α̂ = (K′K)−1K′Y and the orthogonal projection
is Ŷ = Kα̂ = K(K′K)−1K′Y. Therefore, P = K(K′K)−1K′, i.e. P = X1(X′

1X1)−1X′
1.

7.1 Example: (One-way ANOVA with 2 groups).



Y11
...

Y1n1

Y21
...

Y2n2


=



1 1 0
...
...
...

1 1 0
1 0 1
...
...
...

1 0 1



 µ
α1

α2

 +



ε11
...

ε1n1

ε21
...

ε2n2


LetX1 consist of the first 2 columns ofX. Then

X = X1

(
1 0 1
0 1 −1

)
,

and Xβ = X1α, where

α =
(

µ + α2

α1 − α2

)
.
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Then

α̂ =
(

n n1

n1 n1

)−1 ( ∑
j Y1j +

∑
j Y2j∑

j Y1j

)
=

(
n−1

2 −n−1
2

−n−1
2 n−1

1 + n−1
2

) ( ∑
j Y1j +

∑
j Y2j∑

j Y1j

)

=
(

Ȳ2

Ȳ1 − Ȳ2

)
,

and hence Ŷ = X1α̂ = (Ȳ1·, . . . , Ȳ1·, Ȳ2·, . . . , Ȳ2·)′.

7.2 Finding a Generalized Inverse (X′X)−

Let X = (X1,X2), where X1 consists of r linearly independent columns from X. Then a generalized
inverse of X′X is

(X′X)− =
(

(X′
1X1)−1 0
0 0

)
.

A solution to the normal equations is β̂ = (X′X)−X′Y and Ŷ = Xβ̂ = X(X′X)−X′Y = PY, where
P = X(X′X)−X′. Note that this also gives P = X1(X′

1X1)−1X′
1. This result is a special case of the

following theorem:

7.2 Theorem: Let the matrixWp×p have rank r and be partitioned as

W =
(

A B
C D

)
,

where A has rank r. Then a generalized inverse ofW is

W− =
(

A−1 0
0 0

)
.

7.3 Example: (One-way ANOVA with 2 groups, continued). We have

X′X =

 n n1 n2

n1 n1 0
n2 0 n2

 .

IfX1 consists of the first 2 columns ofX, then

(X′
1X1)−1 =

(
n n1

n1 n1

)−1

=
(

n−1
2 −n−1

2

−n−1
2 n−1

1 + n−1
2

)
.

and generalized inverse ofX′X is

(X′X)− =

 n−1
2 −n−1

2 0
−n−1

2 n−1
1 + n−1

2 0
0 0 0

 .
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Now a solution to the normal equations is

β̂ =

 n−1
2 −n−1

2 0
−n−1

2 n−1
1 + n−1

2 0
0 0 0




∑
j Y1j +

∑
j Y2j∑

j Y1j∑
j Y2j

 =

 Ȳ2

Ȳ1 − Ȳ2

0

 ,

and Ŷ = Xβ̂ = (Ȳ1·, . . . , Ȳ1·, Ȳ2·, . . . , Ȳ2·)′, as before.

7.3 Imposing Identifiability Constraints

Impose s = p − r constraints on β to make β uniquely determined (identifiable), i.e. such that for any
θ ∈ R(X), there is a unique β satisfying

Xβ = θ and Hβ = 0.

This can be written (
θ
0

)
=

(
X
H

)
β ≡ Gβ.

Now when is there a unique solution?

7.4 Theorem: A unique solution exists if and only ifG has rank p and the rows ofH are linearly independent
of the rows of X.

7.5 Theorem: A unique solution exists if and only ifG has rank p andH has rank p − r.

To estimate β, we solve Ŷ = Xβ̂ and Hβ̂ = 0 , i.e. we solve the augmented normal equations X′Xβ̂ =
X′Y and H′Hβ̂ = 0, i.e. (X′X + H′H)β̂ = (G′G)β̂ = X′Y. Therefore,

β̂ = (G′G)−1X′Y, and Ŷ = Xβ̂ = PY, where P = X(G′G)−1X′.

7.6 Example: (One-way ANOVA with 2 groups, cont.). Set α1 + α2 = 0, i.e.

Hβ ≡ (0, 1, 1)

 µ
α1

α2

 = 0.

Suppose n1 = n2 = m. Then it can be shown that

β̂ =

 Ȳ··
1
2(Ȳ1· − Ȳ2·)
1
2(Ȳ2· − Ȳ1·)


satisfies the normal equations, and clearly satisfies the constraint α1 +α2 = 0. Therefore, we have as before
Ŷ = Xβ̂ = (Ȳ1·, . . . , Ȳ1·, Ȳ2·, . . . , Ȳ2·)′.


