7 Design Matrices of Less Than Full Rank

If $\mathbf{X}_{n \times p}$ has rank $r<p$, there is not a unique solution $\hat{\boldsymbol{\beta}}$ to the normal equations. We have three ways to find a solution $\hat{\boldsymbol{\beta}}$ and the orthogonal projection $\hat{\mathbf{Y}}$:

1. Reducing the model to one of full rank.
2. Finding a generalized inverse $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}$.
3. Imposing identifiability constraints.

7.1 Reducing the Model to One of Full Rank

Let \mathbf{X}_{1} consist of r linearly independent columns from \mathbf{X} and let \mathbf{X}_{2} consist of the remaining columns. Then $\mathbf{X}_{\mathbf{2}}=\mathbf{X}_{\mathbf{1}} \mathbf{F}$ because the columns of \mathbf{X}_{2} are linearly dependent on the columns of \mathbf{X}_{1}.

$$
\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}\right)=\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{1}} \mathbf{F}\right)=\mathbf{X}_{\mathbf{1}}\left(\mathbf{I}_{\mathbf{r} \times \mathbf{r}}, \mathbf{F}\right) .
$$

This is a special case of the factorization $\mathbf{X}=\mathbf{K L}$, where $\operatorname{rank}\left(\mathbf{K}_{n \times r}\right)=r$ and $\operatorname{rank}\left(\mathbf{L}_{r \times p}\right)=r$. Now,

$$
E[\mathbf{Y}]=\mathbf{X} \boldsymbol{\beta}=\mathbf{K} \mathbf{L} \boldsymbol{\beta}=\mathbf{K} \boldsymbol{\alpha} .
$$

Since \mathbf{K} has full rank, the least squares estimate of $\boldsymbol{\alpha}$ is $\hat{\boldsymbol{\alpha}}=\left(\mathbf{K}^{\prime} \mathbf{K}\right)^{-1} \mathbf{K}^{\prime} \mathbf{Y}$ and the orthogonal projection is $\hat{\mathbf{Y}}=\mathbf{K} \hat{\boldsymbol{\alpha}}=\mathbf{K}\left(\mathbf{K}^{\prime} \mathbf{K}\right)^{-1} \mathbf{K}^{\prime} \mathbf{Y}$. Therefore, $\mathbf{P}=\mathbf{K}\left(\mathbf{K}^{\prime} \mathbf{K}\right)^{-1} \mathbf{K}^{\prime}$, i.e. $\mathbf{P}=\mathbf{X}_{\mathbf{1}}\left(\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}}\right)^{-\mathbf{1}} \mathbf{X}_{\mathbf{1}}^{\prime}$.
7.1 Example: (One-way ANOVA with 2 groups).

$$
\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 n_{1}} \\
Y_{21} \\
\vdots \\
Y_{2 n_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
\vdots & \vdots & \vdots \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\vdots & \vdots & \vdots \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 n_{1}} \\
\varepsilon_{21} \\
\vdots \\
\varepsilon_{2 n_{2}}
\end{array}\right)
$$

Let \mathbf{X}_{1} consist of the first 2 columns of \mathbf{X}. Then

$$
\mathbf{X}=\mathbf{X}_{1}\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

and $\mathbf{X} \boldsymbol{\beta}=\mathbf{X}_{1} \boldsymbol{\alpha}$, where

$$
\boldsymbol{\alpha}=\binom{\mu+\alpha_{2}}{\alpha_{1}-\alpha_{2}}
$$

Then

$$
\begin{aligned}
\hat{\boldsymbol{\alpha}} & =\left(\begin{array}{cc}
n & n_{1} \\
n_{1} & n_{1}
\end{array}\right)^{-1}\binom{\sum_{j} Y_{1 j}+\sum_{j} Y_{2 j}}{\sum_{j} Y_{1 j}}=\left(\begin{array}{cc}
n_{2}^{-1} & -n_{2}^{-1} \\
-n_{2}^{-1} & n_{1}^{-1}+n_{2}^{-1}
\end{array}\right)\binom{\sum_{j} Y_{1 j}+\sum_{j} Y_{2 j}}{\sum_{j} Y_{1 j}} \\
& =\binom{\bar{Y}_{2}}{\bar{Y}_{1}-\bar{Y}_{2}},
\end{aligned}
$$

and hence $\hat{\mathbf{Y}}=\mathbf{X}_{1} \hat{\boldsymbol{\alpha}}=\left(\bar{Y}_{1}, \ldots, \bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{2} .\right)^{\prime}$.

7.2 Finding a Generalized Inverse $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-}$

Let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}\right)$, where \mathbf{X}_{1} consists of r linearly independent columns from \mathbf{X}. Then a generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$ is

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}=\left(\begin{array}{cc}
\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) .
$$

A solution to the normal equations is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}$ and $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{P Y}$, where $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}$. Note that this also gives $\mathbf{P}=\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime}$. This result is a special case of the following theorem:
7.2 Theorem: Let the matrix $\mathbf{W}_{p \times p}$ have rank r and be partitioned as

$$
\mathbf{W}=\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)
$$

where \mathbf{A} has rank r. Then a generalized inverse of \mathbf{W} is

$$
\mathbf{W}^{-}=\left(\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

7.3 Example: (One-way ANOVA with 2 groups, continued). We have

$$
\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{ccc}
n & n_{1} & n_{2} \\
n_{1} & n_{1} & 0 \\
n_{2} & 0 & n_{2}
\end{array}\right)
$$

If \mathbf{X}_{1} consists of the first 2 columns of \mathbf{X}, then

$$
\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1}=\left(\begin{array}{cc}
n & n_{1} \\
n_{1} & n_{1}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
n_{2}^{-1} & -n_{2}^{-1} \\
-n_{2}^{-1} & n_{1}^{-1}+n_{2}^{-1}
\end{array}\right) .
$$

and generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$ is

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}=\left(\begin{array}{ccc}
n_{2}^{-1} & -n_{2}^{-1} & 0 \\
-n_{2}^{-1} & n_{1}^{-1}+n_{2}^{-1} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Now a solution to the normal equations is

$$
\hat{\boldsymbol{\beta}}=\left(\begin{array}{ccc}
n_{2}^{-1} & -n_{2}^{-1} & 0 \\
-n_{2}^{-1} & n_{1}^{-1}+n_{2}^{-1} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\sum_{j} Y_{1 j}+\sum_{j} Y_{2 j} \\
\sum_{j} Y_{1 j} \\
\sum_{j} Y_{2 j}
\end{array}\right)=\left(\begin{array}{c}
\bar{Y}_{2} \\
\bar{Y}_{1}-\bar{Y}_{2} \\
0
\end{array}\right)
$$

and $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\left(\bar{Y}_{1} ., \ldots, \bar{Y}_{1}, \bar{Y}_{2} ., \ldots, \bar{Y}_{2} .\right)^{\prime}$, as before.

7.3 Imposing Identifiability Constraints

Impose $s=p-r$ constraints on $\boldsymbol{\beta}$ to make $\boldsymbol{\beta}$ uniquely determined (identifiable), i.e. such that for any $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$, there is a unique $\boldsymbol{\beta}$ satisfying

$$
\mathbf{X} \boldsymbol{\beta}=\boldsymbol{\theta} \quad \text { and } \quad \mathbf{H} \boldsymbol{\beta}=\mathbf{0} .
$$

This can be written

$$
\binom{\boldsymbol{\theta}}{\mathbf{0}}=\binom{\mathbf{X}}{\mathbf{H}} \beta \equiv \mathbf{G} \boldsymbol{\beta} .
$$

Now when is there a unique solution?
7.4 Theorem: A unique solution exists if and only if \mathbf{G} has rank p and the rows of \mathbf{H} are linearly independent of the rows of \mathbf{X}.
7.5 Theorem: A unique solution exists if and only if \mathbf{G} has rank p and \mathbf{H} has rank $p-r$.

To estimate $\boldsymbol{\beta}$, we solve $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ and $\mathbf{H} \hat{\boldsymbol{\beta}}=\mathbf{0}$, i.e. we solve the augmented normal equations $\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=$ $\mathbf{X}^{\prime} \mathbf{Y}$ and $\mathbf{H}^{\prime} \mathbf{H} \hat{\boldsymbol{\beta}}=\mathbf{0}$, i.e. $\left(\mathbf{X}^{\prime} \mathbf{X}+\mathbf{H}^{\prime} \mathbf{H}\right) \hat{\boldsymbol{\beta}}=\left(\mathbf{G}^{\prime} \mathbf{G}\right) \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{Y}$. Therefore,

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \text {, and } \hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{P Y} \text {, where } \mathbf{P}=\mathbf{X}\left(\mathbf{G}^{\prime} \mathbf{G}\right)^{-1} \mathbf{X}^{\prime}
$$

7.6 Example: (One-way ANOVA with 2 groups, cont.). Set $\alpha_{1}+\alpha_{2}=0$, i.e.

$$
\mathbf{H} \boldsymbol{\beta} \equiv(0,1,1)\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right)=0 .
$$

Suppose $n_{1}=n_{2}=m$. Then it can be shown that

$$
\hat{\boldsymbol{\beta}}=\left(\begin{array}{c}
\bar{Y}_{. .} \\
\frac{1}{2}\left(\bar{Y}_{1 .}-\bar{Y}_{2 .}\right) \\
\frac{1}{2}\left(\bar{Y}_{2} .-\bar{Y}_{1} .\right)
\end{array}\right)
$$

satisfies the normal equations, and clearly satisfies the constraint $\alpha_{1}+\alpha_{2}=0$. Therefore, we have as before $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\left(\bar{Y}_{1 .}, \ldots, \bar{Y}_{1 .}, \bar{Y}_{2}, \ldots, \bar{Y}_{2 .}\right)^{\prime}$.

