8 Orthogonal Structure in the Design Matrix

Partition the linear model as

$$
\boldsymbol{\mu}=\left(\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{k}\right)\left(\begin{array}{c}
\boldsymbol{\beta}_{0} \\
\boldsymbol{\beta}_{1} \\
\vdots \\
\boldsymbol{\beta}_{k}
\end{array}\right),
$$

where \mathbf{X}_{j} is $n \times p_{j}, \boldsymbol{\beta}_{j}$ is $p_{j} \times 1$, and $\sum_{j} p_{j}=p$. Suppose that the columns of \mathbf{X}_{i} are orthogonal to those of \mathbf{X}_{j}, i.e., $\mathbf{X}_{i}^{\prime} \mathbf{X}_{j}=\mathbf{0}$, for all i, j. Then $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ has the form

$$
\left(\begin{array}{c}
\hat{\boldsymbol{\beta}}_{0} \\
\hat{\boldsymbol{\beta}}_{1} \\
\vdots \\
\hat{\boldsymbol{\beta}}_{k}
\end{array}\right)=\left(\begin{array}{cccc}
\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \left(\mathbf{X}_{k}^{\prime} \mathbf{X}_{k}\right)^{-1}
\end{array}\right)\left(\begin{array}{c}
\mathbf{X}_{0}^{\prime} \mathbf{Y} \\
\mathbf{X}_{1}^{\prime} \mathbf{Y} \\
\vdots \\
\mathbf{X}_{k}^{\prime} \mathbf{Y}
\end{array}\right)=\left(\begin{array}{c}
\left(\mathbf{X}_{0}^{\prime} \mathbf{X}_{0}\right)^{-1} \mathbf{X}_{0}^{\prime} \mathbf{Y} \\
\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{Y} \\
\vdots \\
\left(\mathbf{X}_{k}^{\prime} \mathbf{X}_{k}\right)^{-1} \mathbf{X}_{k}^{\prime} \mathbf{Y}
\end{array}\right)
$$

Therefore, the least-squares estimate of $\boldsymbol{\beta}_{i}$ does not depend on whether any of the other terms are in the model. Also,

$$
R S S=\mathbf{Y}^{\prime} \mathbf{Y}-\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{Y}^{\prime} \mathbf{Y}-\sum_{i=0}^{k} \hat{\boldsymbol{\beta}}_{i}^{\prime} \mathbf{X}_{i}^{\prime} \mathbf{Y}
$$

i.e. if $\boldsymbol{\beta}_{i}$ is set equal to $0, \operatorname{RSS}$ increases by $\hat{\boldsymbol{\beta}}_{i}^{\prime} \mathbf{X}_{i}^{\prime} \mathbf{Y}$.
8.1 Example: (Simple linear regression).

- Model 1A: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$.

The least-squares estimate of β_{1} is

$$
\hat{\beta}_{1}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) Y_{i} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

- Model 1B: $Y_{i}=\beta_{1} x_{i}+\varepsilon_{i}$.

The least-squares estimate of β_{1} is

$$
\hat{\beta}_{1}=\sum_{i=1}^{n} x_{i} Y_{i} / \sum_{i=1}^{n} x_{i}^{2} .
$$

The slope estimates in Models 1A and 1B are equal only when $\bar{x}=0$, i.e., when $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ is orthogonal to the intercept $\mathbf{1}=(1, \ldots, 1)^{\prime}$. Note that in Model $1 \mathrm{~A}, \hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are uncorrelated when $\bar{x}=0$.

- Model 2A: $Y_{i}=\beta_{0}+\beta_{1} \bar{x}+\beta_{1}\left(x_{i}-\bar{x}\right)+\varepsilon_{i}=\beta_{0}^{*}+\beta_{1}\left(x_{i}-\bar{x}\right)+\varepsilon_{i}$.

Now

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & x_{1}-\bar{x} \\
1 & x_{2}-\bar{x} \\
\vdots & \vdots \\
1 & x_{n}-\bar{x}
\end{array}\right)=\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

has orthogonal columns, and hence

$$
\hat{\beta}_{0}^{*}=\frac{\mathbf{x}_{0}^{\prime} \mathbf{Y}}{\mathbf{x}_{0}^{\prime} \mathbf{x}_{0}}=\bar{Y}, \quad \hat{\beta}_{1}=\frac{\mathbf{x}_{1}^{\prime} \mathbf{Y}}{\mathbf{x}_{1}^{\prime} \mathbf{x}_{1}}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) Y_{i} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

- Model 2B: $Y_{i}=\beta_{1}\left(x_{i}-\bar{x}\right)+\varepsilon_{i}$.
$\hat{\beta}_{1}$ is the same as in Model 2A because of orthogonality.
8.2 Theorem: If \mathbf{A} and \mathbf{D} are symmetric and all inverses exist,

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\prime} & \mathbf{D}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B E}^{-1} \mathbf{B}^{\prime} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B E}^{-1} \\
-\mathbf{E}^{-1} \mathbf{B}^{\prime} \mathbf{A}^{-1} & \mathbf{E}^{-1}
\end{array}\right),
$$

where $\mathbf{E}=\mathbf{D}-\mathbf{B}^{\prime} \mathbf{A}^{-1} \mathbf{B}$.
8.3 Theorem: Assume the linear model $\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$, where the columns of \mathbf{X} are linearly independent and satisfy $\mathbf{x}_{i}^{\prime} \mathbf{x}_{i} \leq c_{i}^{2}$ for fixed constants c_{i}. Then

$$
\operatorname{var}\left(\hat{\beta}_{i}\right) \geq \sigma^{2} / c_{i}^{2}
$$

and the minimum is attained when $\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}=c_{i}^{2}$ and the columns of \mathbf{X} are orthogonal, i.e., $\mathbf{x}_{i}^{\prime} \mathbf{x}_{j}=0$, for $j \neq i$.
8.4 Example: (2^{k} factorial design). Suppose that k factors are to be studied to determine their effect on the output of a manufacturing process. Each factor is to be varied within a given plausible range of values and the variables have been scaled so that the range is -1 to +1 . Then the theorem implies that the optimal design has orthogonal columns and all variables set to +1 or -1 . If $n=2^{k}$ such a design is called a 2^{k} factorial design.

