Homework Assignment \#6
 (Due Monday, December 5, 2005)

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

1. The following data give the mean and standard deviation on an examination (ILEA score) for a random sample of 7 schools from the population of all high schools in England. There were 50 students examined in each school.

School	ILEA Mean	ILEA s. d.
1	28.3	13.4
2	21.1	14.2
3	14.3	11.8
4	16.3	14.9
5	26.5	13.4
6	20.3	12.1
7	16.8	13.9

(a) Explain why a one-way random effects model is appropriate for this data set.
(b) Obtain the analysis of variance table.
(c) Obtain estimates for the two variance components and a confidence interval for the ratio of the two variance components (i. e. for $\sigma_{1}^{2} / \sigma^{2}$). Comment on the results.
2. There are three frequently occurring test statistics, the likelihood ratio test statistic, the Wald test, and the score test. If \mathbf{Y} has the probability density function $f(\mathbf{y} ; \boldsymbol{\beta})$ at $\mathbf{Y}=\mathbf{y}$, where $\boldsymbol{\beta}$ is $p \times 1$, then hypothesis of interest are often of the form $H_{0}: \mathbf{L}^{\prime} \boldsymbol{\beta}=\boldsymbol{\xi}$ versus $H_{1}: \mathbf{L}^{\prime} \boldsymbol{\beta} \neq \boldsymbol{\xi}$, where \mathbf{L}^{\prime} is $s \times p$ of rank $s \leq p$. Let

- $\hat{\boldsymbol{\beta}}$ denote the maximum likelihood estimate of $\boldsymbol{\beta}$ under the full model,
- $\tilde{\boldsymbol{\beta}}$ denote the maximum likelihood estimate of $\boldsymbol{\beta}$ under the model assuming the null hypothesis is true,
- $\ell(\boldsymbol{\beta})=\log [f(\mathbf{y} ; \boldsymbol{\beta})]$ denote the \log likelihood function,
- $\mathbf{s}(\boldsymbol{\beta})$ be the vector of scores with $j^{\text {th }}$ component

$$
s_{j}(\boldsymbol{\beta})=\frac{\delta \ell(\boldsymbol{\beta})}{\delta \beta_{j}}
$$

- $\Im(\boldsymbol{\beta})$ be Fisher's information matrix which has j, k element equal to

$$
-E\left[\frac{\delta^{2} \ell(\boldsymbol{\beta})}{\delta \beta_{j} \delta \beta_{k}}\right]
$$

The three test statistics in this case are the likelihood ratio test statistic, given by

$$
-2[\ell(\tilde{\boldsymbol{\beta}})-\ell(\hat{\boldsymbol{\beta}})],
$$

the Wald test statistic, given by

$$
\left(\mathbf{L}^{\prime} \hat{\boldsymbol{\beta}}-\boldsymbol{\xi}\right)^{\prime}\left[\mathbf{L}^{\prime} \Im(\hat{\boldsymbol{\beta}})^{-1} \mathbf{L}\right]^{-1}\left(\mathbf{L}^{\prime} \hat{\boldsymbol{\beta}}-\boldsymbol{\xi}\right)
$$

and the score test, given by

$$
\mathbf{s}^{\prime}(\tilde{\boldsymbol{\beta}}) \Im(\tilde{\boldsymbol{\beta}})^{-1} \mathbf{s}(\tilde{\boldsymbol{\beta}})
$$

For the linear model $\mathbf{Y} \sim \operatorname{MVN}\left(\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}, \sigma^{2} \mathbf{I}\right)$, where \mathbf{X}_{1} is $n \times q$ of rank q, \mathbf{X}_{2} is $n \times(p-q)$ of rank $p-q, \mathbf{X}=\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]$ is $n \times p$ of rank p, and σ^{2} is known, derive the three test statistics for testing $H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}$ versus $H_{1}: \boldsymbol{\beta}_{2} \neq \mathbf{0}$. Comment.

