Homework Assignment #6 (Due Monday, December 5, 2005)

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

1. The following data give the mean and standard deviation on an examination (ILEA score) for a random sample of 7 schools from the population of all high schools in England. There were 50 students examined in each school.

School	ILEA Mean	ILEA s. d.
1	28.3	13.4
2	21.1	14.2
3	14.3	11.8
4	16.3	14.9
5	26.5	13.4
6	20.3	12.1
7	16.8	13.9

- (a) Explain why a one-way random effects model is appropriate for this data set.
- (b) Obtain the analysis of variance table.
- (c) Obtain estimates for the two variance components and a confidence interval for the ratio of the two variance components (i. e. for σ_1^2/σ^2). Comment on the results.
- There are three frequently occurring test statistics, the likelihood ratio test statistic, the Wald test, and the score test. If Y has the probability density function f(y; β) at Y = y, where β is p × 1, then hypothesis of interest are often of the form H₀: L'β = ξ versus H₁: L'β ≠ ξ, where L' is s × p of rank s ≤ p. Let
 - $\hat{\beta}$ denote the maximum likelihood estimate of β under the full model,
 - $\tilde{\beta}$ denote the maximum likelihood estimate of β under the model assuming the null hypothesis is true,
 - $\ell(\beta) = \log[f(\mathbf{y}; \beta)]$ denote the log likelihood function,
 - $s(\beta)$ be the vector of scores with j^{th} component

$$s_j(\boldsymbol{\beta}) = \frac{\delta \ell(\boldsymbol{\beta})}{\delta \beta_j},$$

• $\Im(\beta)$ be Fisher's information matrix which has j, k element equal to

$$-E\left[\frac{\delta^2\ell(\boldsymbol{\beta})}{\delta\beta_j\delta\beta_k}\right].$$

The three test statistics in this case are the likelihood ratio test statistic, given by

$$-2[\ell(\tilde{\boldsymbol{\beta}}) - \ell(\hat{\boldsymbol{\beta}})],$$

the Wald test statistic, given by

$$(\mathbf{L}'\hat{\boldsymbol{\beta}} - \boldsymbol{\xi})'[\mathbf{L}'\Im(\hat{\boldsymbol{\beta}})^{-1}\mathbf{L}]^{-1}(\mathbf{L}'\hat{\boldsymbol{\beta}} - \boldsymbol{\xi}),$$

and the score test, given by

$$\mathbf{s}'(\tilde{\boldsymbol{\beta}})\Im(\tilde{\boldsymbol{\beta}})^{-1}\mathbf{s}(\tilde{\boldsymbol{\beta}}).$$

For the linear model $\mathbf{Y} \sim \text{MVN}(\mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2, \sigma^2 \mathbf{I})$, where \mathbf{X}_1 is $n \times q$ of rank q, \mathbf{X}_2 is $n \times (p-q)$ of rank p - q, $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]$ is $n \times p$ of rank p, and σ^2 is known, derive the three test statistics for testing $H_0 : \boldsymbol{\beta}_2 = \mathbf{0}$ versus $H_1 : \boldsymbol{\beta}_2 \neq \mathbf{0}$. Comment.