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11 Hypothesis Testing

11.1 Introduction

Suppose we want to test the hypothesis: H : Aq×pβp×1 = 0q×1. In terms of the rows ofA this can be
written as 


a′

1
...
a′

q


 β = 0,

i.e. a′
iβ = 0 for each row ofA (here a′i denotes the ith row ofA).

11.1 Definition: The hypothesis H : Aβ = 0 is testable if a′iβ is an estimable function for each row a′i of A.

11.2 Note: Recall that a′iβ is estimable if a′i = b′
iX for some bi. ThereforeH : Aβ = 0 is testable ifA = MX

for someM, i.e. the rows of A are linearly dependent on the rows ofX.

11.3 Example: (One-way ANOVA with 3 groups).



Y11
...

Y1J

Y21
...

Y2J

Y31
...

Y3J




=




1 1 0 0
...
...
...
...

1 1 0 0
1 0 1 0
...
...
...
...

1 0 1 0
1 0 0 1
...
...
...
...

1 0 0 1







µ
α1

α2

α3


 +




ε11
...

ε1J

ε21
...

ε2J

ε31
...

ε3J




Examples of testable hypotheses are:

• H : (1, 1, 0, 0)β = µ + α1 = 0

• H : (1, 0, 1, 0)β = µ + α2 = 0

• H : (1, 0, 0, 1)β = µ + α3 = 0

• H : (0, 1,−1, 0)β = α1 − α2 = 0

• H :

(
0 1 −1 0
0 0 1 −1

)
β =

(
α1 − α2

α2 − α3

)
=

(
0
0

)
, i.e. α1 = α2 = α3 (no group effects).

How should we test H : Aβ = 0? We could compare the residual sum of squares (RSS) for the full model
Y = Xβ + ε to the residual sum of squares (RSSH) for the restricted model (withAβ = 0).
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Let µ = E[Y]. Under the full model, µ = Xβ ∈ R(X) ≡ Ω. If H : Aβ = 0 is a testable hypothesis with
A = MX, then

H : Aβ = 0 (and µ = Xβ) ⇔ H : Mµ = 0 (and µ = Xβ) ⇔ H : µ ∈ R(X) ∩N (M) ≡ ω,

where N (M) = {u : Mu = 0} is the null space of M. Thus we have translated a hypothesis about
β into a hypothesis about µ = E[Y]. We can write ω as {µ : µ = Xβ,Aβ = 0} or, equivalently,
ω = {µ : µ = Xβ,Mµ = 0}.
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Y

Ŷ = PΩY

e = (I − PΩ)Y

ŶH = PωY

Ŷ − ŶH = (PΩ − Pω)Y

Ω

ω

Let Ŷ = PΩY and ŶH = PωY be the orthogonal projections onto Ω and ω. The RSS for the full model is

RSS = (Y − Ŷ)′(Y − Ŷ) = Y′(I − PΩ)Y

and the RSS for the restricted model (with µ ∈ ω) is

RSSH = (Y − ŶH)′(Y − ŶH) = Y′(I − Pω)Y.

Hence
RSSH − RSS = Y′(PΩ − Pω)Y.

11.4 Theorem: Let Ω = R(X) and ω = Ω ∩ N (M). Then

1. PΩ − Pω = Pω⊥∩Ω

2. ω⊥ ∩ Ω = R(PΩM′)

3. If H : Aβ = 0 is a testable hypothesis, PΩ − Pω = X(X′X)−A′[A(X′X)−A′]−A(X′X)−X′

11.5 Theorem: If H : Aβ = 0 is a testable hypothesis, then RSSH − RSS = (Aβ̂)′[A(X′X)−A′]−(Aβ̂).
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11.6 Theorem: LetH : Aβ = 0 be a testable hypothesis.

(a) cov(Aβ̂) = σ2A(X′X)−A′.

(b) If rank(A) = q, then (RSSH − RSS)/σ2 = (Aβ̂)′[cov(Aβ̂)]−1(Aβ̂).

(c) E[RSSH − RSS] = σ2q + (Aβ)′[A(X′X)−A′]−1(Aβ).

(d) If H : Aβ = 0 is true and Y ∼ Nn(Xβ, σ2I), then (RSSH − RSS)/σ2 ∼ χ2
q.

When H : Aβ = 0 is true, E[RSSH − RSS] = σ2q. Therefore, we form a test statistic by calculating

RSSH − RSS

qσ̂2
=

(RSSH − RSS)/q
RSS/(n − r)

.

11.7 Definition: Let X1 and X2 be independent random variables with X1 ∼ χ2
d1
and X2 ∼ χ2

d2
. Then the

distribution of the ratio

F =
X1/d1

X2/d2

is defined as the F distribution with d1 numerator degrees of freedom and d2 denominator degrees of free-
dom and is denoted Fd1,d2 .

11.8 Theorem: If Y ∼ Nn(Xβ, σ2I) and H : Aβ = 0 is a testable hypothesis with rank(Aq×p) = q, then,
when H is true,

F =
(RSSH − RSS)/q

RSS/(n − r)
∼ Fq,n−r,

the F distribution with q and n − r degrees of freedom.

11.9 Note: If rank(A) = q, then ŶH = Xβ̂H , with

β̂H = β̂ − (X′X)−A′[A(X′X)−A′]−1Aβ̂,

where β̂ = (X′X)−X′Y.

11.10 Note: The F-test extends to H : Aβ = c, for a constant c. In this case, our previous results become (if
rank(A) = q)

β̂H = β̂ − (X′X)−A′[A(X′X)−A′]−1(Aβ̂ − c),
RSSH − RSS = (Aβ̂ − c)′[A(X′X)−A′]−1(Aβ̂ − c).

and F has the same distribution as before. The derivations use a solution β0 toAβ0 = c and

Ỹ ≡ Y − Xβ0 = X(β − β0) + ε = Xγ + ε,

where γ = β − β0. H becomes H : Aγ = 0, so we can apply the previous theory toỸ.



31

11.11 Example: The t-test. Let U1, . . . , Un1 be i.i.d. N(µ1, σ
2) and V1, . . . , Vn2 be i.i.d. N(µ2, σ

2), indepen-
dently of the Ui. As a linear model,



U1
...

Un1

V1
...

Vn2




=




1 0
...
...

1 0
0 1
...
...

0 1




(
µ1

µ2

)
+




ε1
...

εn1

εn1+1
...

εn




.

The hypothesis H : µ1 = µ2 leads to

F =
RSSH − RSS

RSS/(n − 2)
= (Ū − V̄ )2

[
S2

(
1
n1

+
1
n2

)]−1

= T 2,

where T = (Ū − V̄ )/(S
√

1
n1

+ 1
n2

) is the two-sample t statistic.

11.12 Example: Multiple Linear Regression.

Yi = β0 + β1xi1 + . . . + βp−1xi,p−1 + εi.

The test H : βj = 0 (j �= 0) leads to

F =
RSSH − RSS

RSS/(n − p)
= (β̂j)

2/[SE(β̂j)]
2 = T 2,

where T = β̂j/SE(β̂j) is the usual t statistic for testing the significance of coefficients in a multiple
regression model.

11.13 Example: Simple Linear Regression.

Yi = β0 + β1(xi − x̄) + εi.

Then

β̂1 =
∑

i xiYi − ∑
i xi

∑
i Yi/n∑

i(xi − x̄)2
=

∑
i(xi − x̄)(Yi − Ȳ )∑

i(xi − x̄)2

and
var(β̂1) = σ2/

∑
i

(xi − x̄)2.

From the previous example, the F statistic for testing H : β1 = 0 is

F =
β̂2

1

S2/
∑

i(xi − x̄)2
.
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It can be shown that
RSS = (1 − r2)

∑
i

(Yi − Ȳ )2 = (1 − r2)RSSH ,

where r is the sample correlation coefficient:

r =
∑

i(xi − x̄)(Yi − Ȳ )[∑
i(xi − x̄)2

∑
i(Yi − Ȳ )2

]1/2
.

This means that r2 = (RSSH − RSS)/RSSH is the proportion of variance (RSS) explained by the
regression relationship. We will later generalize this to the sample multiple correlation coefficient (R2).

11.2 Power of the F -Test:

Consider the model Y = Xβ+ε, ε ∼ Nn(0, σ2I), with rank(Xn×p) = r. Then the F statistic for testing
H : Aβ = 0 is

F =
(RSSH − RSS)/q

RSS/(n − r)
,

where rank(Aq×p) = q. Our goal is to calculate

Power = P (F > Fα
q,n−r|H not true).

11.14 Definition: Let X1 and X2 be independent random variables with X1 ∼ χ2
d1

(λ) and X2 ∼ χ2
d2
. Then the

distribution of the ratio

F =
X1/d1

X2/d2

is defined as the non-central F distribution with d1 numerator degrees of freedom, d2 denominator degrees
of freedom, and non-centrality parameter λ, and is denoted Fd1,d2(λ).

11.15 Theorem: The F statistic for testing H : Aβ = 0 has the non-central F distribution F ∼ Fq,n−r(λ),
where λ = µ′(PΩ − Pω)µ/2σ2.

11.16 Note: When calculating the non-centrality parameter λ, we can use the following representations:

σ22λ = µ′(PΩ − Pω)µ
= Y′(PΩ − Pω)Y

∣∣
Y=µ

= (RSSH − RSS)
∣∣
Y=µ

= (Aβ̂)′[A(X′X)−A′]−1(Aβ̂)
∣∣
Y=µ

= (Aβ)′[A(X′X)−A′]−1(Aβ).

So we just have to substitute the true mean µ under the alternative hypothesis or the true parameterAβ into
appropriate formulas for RSSH − RSS.
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11.3 The Overall F -Test:

Assume the linear model
Yi = β0 + β1xi1 + . . . + βp−1xi,p−1 + εi,

with full rank design matrix (rank(X) = p). Note that we are assuming the model contains an intercept.
Suppose we want to test whether the overall model is significant, i.e. H : β1 = β2 = · · · = βp−1 = 0. This
can be written as

H : Aβ = (0, I(p−1)×(p−1))β = 0.

The F test for H yields

F =
(RSSH − RSS)/(p − 1)

RSS/(n − p)
∼ Fp−1,n−p, if H is true.

This is called the overall F -test statistic for the linear model. It is useful as a preliminary test of the sig-
nificance of the model prior to performing model selection to determine which variables in the model are
important.

11.4 The Multiple Correlation Coefficient:

The sample multiple correlation coefficient is defined as the correlation between the observations Yi and the
fitted values Ŷi from the regression model:

R ≡ corr(Yi, Ŷi) =
∑

i(Yi − Ȳ )(Ŷi − ¯̂
Y )[∑

i(Yi − Ȳ )2
∑

i(Ŷi − ¯̂
Y )2

]1/2
.

11.17 Theorem: ANOVA decomposition:∑
i

(Yi − Ȳ )2 =
∑

i

(Yi − Ŷi)2 +
∑

i

(Ŷi − Ȳ )2 i.e. Total SS = Residual SS + Regression SS

11.18 Theorem: R2 as coefficient of determination:

R2 =
∑

i(Ŷi − Ȳ )2∑
i(Yi − Ȳ )2

=
REG:SS
TOTAL:SS

,

or equivalently,

1 − R2 =
∑

i(Yi − Ŷ )2∑
i(Yi − Ȳ )2

=
RSS

TOTAL:SS
.

11.19 Note: R2 is the proportion of variance in the Yi explained by the regression model. R2 is a generalization
of r2 for simple linear regression. It indicates how closely the estimated linear model fits the data. IfR2 = 1
(the maximum value) then Yi = Ŷi, and the model is a perfect fit.
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11.20 Theorem: The F-test of a hypothesis of the form H : (0,A1)β = 0 (i. e. the test does not involve the
intercept β0) is a test for a significant reduction in R2:

F =
(R2 − R2

H)
(1 − R2)

(n − p)
q

,

where R2 and R2
H are the sample multiple correlation coefficients for the full model and the reduced model,

respectively.

11.21 Note: This shows that R2 cannot increase when deleting a variable in the model (other than the intercept).

11.5 A Canonical Form forH:

There are two ways to calculate the statistic F = (RSSH−RSS)/q
RSS/(n−r) for a testable hypothesis H : Aβ = 0.

1. Fit the full model and calculate RSSH − RSS = (Aβ̂)′[A(X′X)−A′]−1(Aβ̂).

2. Fit the full model and calculate RSS. Then fit the reduced model and calculate RSSH .

The reduced model is Y = Xβ + ε, with Aβ = 0. To fit this model using a ”canned” computer package,
we need to represent it as

Y = XHβH + εH .

This is called a canonical form for H . Assume rank(A) = q. Then reorder the components of β and
columns of A so that A = (A1,A2) where A2 consists of q linearly independent columns from A (A2 is
invertible). Hence

H : (A1,A2)

(
β1

β2

)
= A1β1 + A2β2 = 0,

and

Xβ = (X1,X2)

(
β1

β2

)
.

This leads toXH = (X1 − X2A−1
2 A1) and βH = β1.

11.22 Example: Analysis of variance Yij = αi + εij . In block matrix form the model is [Yi = (Yi1, . . . , Yini)].




Y1

Y2
...

Yn


 =




1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0np 0np · · · 1np







α1

α2
...

αp


 +




ε1

ε2
...

εn




Test H : α1 = α2 = · · · = αp, i.e.




1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
...

0 · · · · · · 1 −1







α1

α2
...

αp


 =




0
0
...
0


 .

A canoncial form for H is Y = 1α1 + ε.
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11.6 The F Test for Goodness of Fit:

How can we assess if a linear model Y = Xβ + ε is appropriate? Do the predictors adequately describe
the mean of Y or are there important predictors excluded? This is quite different from the overall F test
which tests if the predictors are related to the response. We can test model adequacy if there are replicates,
i.e. independent observations with the same values of the predictors (and so the same mean). Suppose, for
i = 1, . . . , n, we have replicates Yi1, . . . , YiRi corresponding to the values xi1, . . . , xi,p−1 of the predictors.
The full model is

Yir = µi + εir

where the µi are any constants. We wish to test whether they have the form

µi = β0 + β1xi1 + . . . + βp−1xi,p−1.

If µ = (µ1, . . . , µn), we want to test the hypothesis

H : µ = Xβ.

We now apply the general F test to H . The RSS under the full model is

RSS =
n∑

i=1

Ri∑
r=1

(Yir − Ȳi)2,

and for the reduced model

RSSH =
n∑

i=1

Ri∑
r=1

(Yir − β̂0H − β̂1Hxi1 − . . . − β̂p−1,Hxi,p−1)2.

It can be shown that in the case Ri = R the estimates under the reduced model are

β̂H = (X′X)−1X′Z,

where Zi = Ȳi =
∑R

r=1 Yir/R. The F statistic is

F =
(RSSH − RSS)/(n − p)

RSS/(N − n)
∼ Fn−p,N−n,

where N =
∑n

i=1 Ri. This test is also called the lack-of-fit test.


