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13 Effects of Departures from Assumptions

The standard assumption for the hypothesis tests and confidence intervals discussed was ε ∼ MVN(0, σ2I).
We will consider the effects on the inference for various departures from the above assumption.

13.1 Effects of Underfitting

Suppose that the true model is Y = Xβ + Zη + ε with E[ε] = 0 and cov(ε) = σ2I, but we fit the
model E[Y] = Xβ instead. We assume that the columns of Z are linearly independent of the columns of
X, and that X has full rank, i. e. rank(Xn×p) = p.

13.1 Theorem: If we assume the model Y = Xβ + ε, we get E[β̂] = β + (X′X)−1X′Zη, and therefore the
bias for the parameter estimates is equal to (X′X)−1X′Zη. The fitted values are biased as well.

13.2 Example: Fit E[Y ] = β0 + β1x, when the true model is Y = β0 + β1x + β2x
2 + ε. Then
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13.3 Example: Fit E[Yij ] = µi, when the true model is Yij = µi + ηzij + εij , with i = 1, 2, j = 1, . . . , ni.
In other words, we are comparing two groups, but ignore the covariate z. In matrix form the true model is
Y = Xβ + Zη + ε, or




Y11
...

Y1n1

Y21
...

Y2n2




=




1 0
...
...

1 0
0 1
...
...

0 1




(
µ1

µ2

)
+




z11

. . .
z1n1

z21

. . .
z2n2




η +




ε11

. . .
ε1n1

ε21

. . .
ε2n2




.

Then the bias in (µ̂1, µ̂2)′ is (X′X)−1X′Zη = (z̄1, z̄2)′ η, and so the group comparison µ̂1 − µ̂2 is
unbiased if z̄1 = z̄2.
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13.4 Note: Example 13.3 illustrates the effect of randomization. Suppose we randomly assign experimental
units (for example patients) to the two groups. Then z̄1 ≈ z̄2 for any covariate z, as long as groups are fairly
large. Thus, randomization controls for bias due to unfitted covariates.

13.5 Theorem: If we assume the model Y = Xβ + ε, we still have cov(β̂) = σ2(X′X)−1. However, the
estimate of the error variance σ2 is biased, since

E[S2] = σ2 +
η′Z′(I − P)Zη

n − p
> σ2.

13.6 Note: The lesson in Theorem 13.5 is that underfitting leads to overestimation of the error variance.

13.2 Effects of Overfitting

Suppose the true model is Y = X1β1 + ε with E[ε] = 0 and cov(ε) = σ2I, but we fit the model
E[Y] = Xβ = X1β1 + X2β2. In other words, we are fitting the unnecessary terms inX2.

13.7 Theorem: The parameter estimates and the fitted values in the above scenario are still unbiased.

13.8 Note: For cov(β̂1) we have

cov(β̂) = σ2(X′X)−1 = σ2

(
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Therefore,
cov(β̂1) = σ2[(X′

1X1)−1 + FE−1F′],

compared with σ2(X′
1X1)−1 which would result from fitting the true model E[Y] = X1β1.

13.9 Theorem: In the above, FE−1F′ is positive definite unless X′
1X2 = 0.

13.10 Note: The lesson in Theorem 13.9 is that the variance of individual components ofβ̂1 will be inflated by
overfitting unless the unnecessary terms fitted are orthogonal to the other terms in the model.

13.11 Theorem: S2 remains unbiased, i. e. E[S2] = σ2.
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13.12 Note: The lesson in this subsection is that overfitting does not introduce bias into regression coefficient
estimates, but it does inflate their variances. In comparison to underfitting, we have the following:

Effect of Underfitting Effect of Overfitting

β̂ biased unbiased
Ŷ biased unbiased
S2 biased upward unbiased

cov(β̂) still σ2(X′X)−1 > than necessary

13.3 Effects of a Mis-Specified Covariance Matrix

Assume that we have specified E[Y] = Xβ correctly, but suppose that cov(ε) = σ2V, when we assume
that cov(ε) = σ2I.

13.13 Theorem: In the full rank case the parameter estimates are still unbiased, but

cov(β̂) = σ2(X′X)−1X′VX(X′X)−1.

Also, in most cases S2 is biased, since

E[S2] =
σ2

n − p
tr[V(I − P)].

13.14 Example: The effect of non-constant variance in the two-sample t-test:

Assume the model Yij = µi + εij, var(εij) = σ2
i , i = 1, 2, j = 1, . . . , ni. The usual t-statistic for

forming a confidence interval for µ1 − µ2 is
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Ȳ1 − Ȳ2 − (µ1 − µ2)

S(n−1
1 + n−1

2 )1/2
,

where

S2 =
1

n − 2

∑
i

∑
j

(Yij − Ȳi)2 =
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Here, n = n1 + n2, and s2
i is the sample variance in the ith group. Now, if σ2
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distributed, then T ∼ tn−2 ≈ N(0, 1) for large n. However, assume that σ2
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In other words, var(T ) ≈ 1 and therefore T ≈ N(0, 1) for large n if either σ2
1 = σ2

2 (i.e. the equal variance
assumption holds), or if n1 = n2 (i.e. the sample sizes are equal, regardless of equality of variances).
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13.15 Example: (cont.) Recall the 95% confidence interval for µ1 − µ2:

CI = [ Ȳ1 − Ȳ2 − t.025n−2S(n−1
1 + n−1

2 )1/2 , Ȳ1 − Ȳ2 + t.025n−2S(n−1
1 + n−1

2 )1/2 ].

The error rate of this confidence interval is

P (µ1 − µ2 �∈ CI) = P (|T | > t.025n−2) ≈ P (|N(0, v)| > t.025n−2),

where v = (σ2
1

σ2
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)/(n1
n2

σ2
1

σ2
2

+ 1).

Some values of the error rate based on the above normal approximation are given in the table below. The
error rate does not deviate too far from the nominal value of 0.05 unless both the sample sizes and the
variances differ substantially between groups.

↓ σ2
1/σ

2
2

n1/n2
1
8

1
4

1
2 1 2 4 8

1
2 0.011 0.016 0.028 0.050 0.080 0.110 0.133
1 0.050 0.050 0.050 0.050 0.050 0.050 0.050
2 0.133 0.110 0.080 0.050 0.028 0.016 0.011
4 0.237 0.179 0.110 0.050 0.016 0.004 0.001
8 0.331 0.237 0.133 0.050 0.011 0.001 0.000

13.4 Effects of Non-normality

Suppose we have correctly specified the model Y = Xβ+ε, E[ε] = 0, cov(ε) = σ2I, but suppose that
ε is not necessarily multivariate normal.. We have seen previously that in the full rank caseβ̂ is unbiased,
and cov(β̂) = σ2(X′X)−1, without any distributional assumptions. Under some regularity conditions, the
usual distributional properties of β̂ and the F test statistic still hold approximately for large n. In particular,

β̂ ≈ Np(β, σ2(X′X)−1),

and for a testable hypothesis H : Aβ = 0,

F =
(Aβ̂)′[A(X′X)−1A′]−1(Aβ̂)

qS2
≈ χ2

q/q,

where rank(Aq×p) = q. Note that the usual distribution of F when ε ∼ MVN, Fq,n−p, is also approxi-
mately χ2

q/q for large n. Therefore, inferences based on either the F or χ2 distribution will be approximately
correct.

13.16 Note: The effect of non-normality on the type I error rate of F-tests depends more critically on the kurtosis
of the distribution (heaviness of the tails) rather than the skewness. But beware of one-sided t-tests with
skewed data!

13.17 Note: The effect of non-normality tends to be less severe in balanced ANOVA designs.


