14 Residuals and Influence

Let X be a $n \times \tilde{p}$ design matrix of full rank ($\tilde{p} = p + 1$ if we have an intercept, and $\tilde{p} = p$ otherwise), and let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ with $\operatorname{var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$. Define $\mathbf{H} = \mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}$.

- **14.1 Theorem:** Under the above assumptions, $E[\hat{\boldsymbol{\varepsilon}}] = \mathbf{0}$ and $\operatorname{var}(\hat{\boldsymbol{\varepsilon}}) = \sigma^2(\mathbf{I} \mathbf{H})$. In particular, the variance for residual *i* is $\operatorname{var}(\hat{\boldsymbol{\varepsilon}}_i) = \sigma^2(1 h_{ii})$, where $h_{ii} = \mathbf{x}'_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_i$.
- **14.2 Note:** Since rank(**H**) = trace(**H**), it follows that $\sum h_{ii} = \tilde{p}$.
- **14.3** Note: If we assume there is an intercept in the model, then $HI_n = I_n$, and hence $\sum_i h_{ij} = \sum_j h_{ij} = 1$.
- **14.4 Theorem:** Assume we have an intercept in the model. Let \mathcal{X} be the $n \times p$ matrix of the original data (without the intercept) with the column averages substracted off. Let $\mathcal{X}'\mathcal{X}$ be the corrected cross-product matrix, i. e. $(\mathcal{X}'\mathcal{X})_{jk} = \sum_i (x_{ij} \bar{x}_j)(x_{ik} \bar{x}_k)$, and redefine \mathbf{x}'_i to be the *i*th row of \mathbf{X} without the one for the intercept. Then the following holds:
 - (a) h_{ii} = 1/n + (x_i x̄)'(X'X)⁻¹(x_i x̄). This means in particular that each h_{ii} is bounded below by 1/n.
 (b) Let r_i be the number of rows of X that are identical to its *i*th row. Then h_{ii} ≤ 1/r_i.
- **14.5 Example:** $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. Then $h_{ii} = \frac{1}{n} + \frac{(x_i \bar{x})^2}{\sum_k (x_k \bar{x})^2}$, and $h_{ii} = \frac{1}{n}$ iff $x_i = \bar{x}$.
- **14.6 Definition:** The internally studentized residuals are defined as

$$r_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}},$$

where $\hat{\sigma}$ is the estimated standard error including case *i*.

14.7 Definition: The externally studentized residuals are defined as

$$t_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}_{(i)}\sqrt{1 - h_{ii}}}$$

where $\hat{\sigma}_{(i)}$ is the estimated standard error excluding case *i*.

14.8 Theorem: The internally and externally studentized residuals are monotonically related through

$$t_i = r_i \sqrt{\frac{n - \tilde{p} - 1}{n - \tilde{p} - r_i^2}}.$$

14.9 Definition: Cook's distance is defined by

$$D_i = \frac{(\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})' \mathbf{X}' \mathbf{X} (\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})}{\tilde{p} \hat{\sigma}^2} = \frac{(\hat{\mathbf{Y}}_{(i)} - \hat{\mathbf{Y}})' (\hat{\mathbf{Y}}_{(i)} - \hat{\mathbf{Y}})}{\tilde{p} \hat{\sigma}^2} = \frac{1}{\tilde{p}} \times r_i^2 \times \left(\frac{h_{ii}}{1 - h_{ii}}\right),$$

where $\hat{\beta}_{(i)}$ are the parameter estimates obtained after deleting observation *i*, and $\hat{\mathbf{Y}}_{(i)}$ are the corresponding fitted values.

14.10 Theorem: An alternative expression for the Cook's distance is $D_i = \frac{1}{\tilde{p}} \times r_i^2 \times \left(\frac{h_{ii}}{1-h_{ii}}\right)$.

14.11 Note: The importance of plotting the data and checking model assumptions is illustrated below.

Anscombe, 1973.