14 Residuals and Influence

Let \mathbf{X} be a $n \times \tilde{p}$ design matrix of full rank $(\tilde{p}=p+1$ if we have an intercept, and $\tilde{p}=p$ otherwise), and let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ with $\operatorname{var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$. Define $\mathbf{H}=\mathbf{P}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}$.
14.1 Theorem: Under the above assumptions, $E[\hat{\varepsilon}]=\mathbf{0}$ and $\operatorname{var}(\hat{\varepsilon})=\sigma^{2}(\mathbf{I}-\mathbf{H})$. In particular, the variance for residual i is $\operatorname{var}\left(\hat{\varepsilon}_{i}\right)=\sigma^{2}\left(1-h_{i i}\right)$, where $h_{i i}=\mathbf{x}_{i}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i}$.
14.2 Note: Since $\operatorname{rank}(\mathbf{H})=\operatorname{trace}(\mathbf{H})$, it follows that $\sum h_{i i}=\tilde{p}$.
14.3 Note: If we assume there is an intercept in the model, then $\mathbf{H} \mathbf{1}_{n}=\mathbf{1}_{n}$, and hence $\sum_{i} h_{i j}=\sum_{j} h_{i j}=1$.
14.4 Theorem: Assume we have an intercept in the model. Let \mathcal{X} be the $n \times p$ matrix of the original data (without the intercept) with the column averages substracted off. Let $\mathcal{X}^{\prime} \mathcal{X}$ be the corrected cross-product matrix, i. e. $\left(\mathcal{X}^{\prime} \mathcal{X}\right)_{j k}=\sum_{i}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)$, and redefine \mathbf{x}_{i}^{\prime} to be the i th row of \mathbf{X} without the one for the intercept. Then the following holds:
(a) $h_{i i}=\frac{1}{n}+\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime}\left(\mathcal{X}^{\prime} \mathcal{X}\right)^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)$. This means in particular that each $h_{i i}$ is bounded below by $\frac{1}{n}$.
(b) Let r_{i} be the number of rows of \mathbf{X} that are identical to its i th row. Then $h_{i i} \leq \frac{1}{r_{i}}$.
14.5 Example: $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$. Then $h_{i i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{k}\left(x_{k}-\bar{x}\right)^{2}}$, and $h_{i i}=\frac{1}{n}$ iff $x_{i}=\bar{x}$.
14.6 Definition: The internally studentized residuals are defined as

$$
r_{i}=\frac{\hat{\varepsilon}_{i}}{\hat{\sigma} \sqrt{1-h_{i i}}},
$$

where $\hat{\sigma}$ is the estimated standard error including case i.
14.7 Definition: The externally studentized residuals are defined as

$$
t_{i}=\frac{\hat{\varepsilon}_{i}}{\hat{\sigma}_{(i)} \sqrt{1-h_{i i}}},
$$

where $\hat{\sigma}_{(i)}$ is the estimated standard error excluding case i.
14.8 Theorem: The internally and externally studentized residuals are monotonically related through

$$
t_{i}=r_{i} \sqrt{\frac{n-\tilde{p}-1}{n-\tilde{p}-r_{i}^{2}}}
$$

14.9 Definition: Cook's distance is defined by

$$
D_{i}=\frac{\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\hat{\boldsymbol{\beta}}_{(i)}-\hat{\boldsymbol{\beta}}\right)}{\tilde{p} \hat{\sigma}^{2}}=\frac{\left(\hat{\mathbf{Y}}_{(i)}-\hat{\mathbf{Y}}\right)^{\prime}\left(\hat{\mathbf{Y}}_{(i)}-\hat{\mathbf{Y}}\right)}{\tilde{p} \hat{\sigma}^{2}}=\frac{1}{\tilde{p}} \times r_{i}^{2} \times\left(\frac{h_{i i}}{1-h_{i i}}\right),
$$

where $\hat{\boldsymbol{\beta}}_{(i)}$ are the parameter estimates obtained after deleting observation i, and $\hat{\mathbf{Y}}_{(i)}$ are the corresponding fitted values.
14.10 Theorem: An alternative expression for the Cook's distance is $D_{i}=\frac{1}{\tilde{p}} \times r_{i}^{2} \times\left(\frac{h_{i i}}{1-h_{i i}}\right)$.
14.11 Note: The importance of plotting the data and checking model assumptions is illustrated below.

Anscombe, 1973.

