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18 Some More Miscellaneous ANOVA Topics

18.1 Two-Way Analysis of Variance without Replicates

18.1 Note: Recall the 2-way Analysis ANOVA table in Note 17.11:

source sum of squares df mean squares test statistic

Factor A SSA a − 1 MSA = SSA/(a − 1) MSA/MSE

Factor B SSB b − 1 MSB = SSB/(b − 1) MSB/MSE

Interaction SSAB (a − 1)(b − 1) MSAB = SSAB/((a − 1)(b − 1)) MSAB/MSE

Error SSE ab(r − 1) MSE = SSE/(ab(r − 1))

Total SSTOTAL abr − 1

We assumed that we have r replicates per cell. However, for example in randomized block designs (see
Example 15.5), this is usually not the case. If r = 1, then we have no degrees of freedom to estimate the
error if we use an interaction term in the model! This makes sense, since the total degrees of freedom are
ab − 1, and we use a − 1 + b − 1 + (a − 1)(b − 1) = ab − 1 degrees of freedom to estimate the main
effects and the interaction. If the interaction is zero however, then the ANOVA table becomes:

source sum of squares df mean squares test statistic

Factor A SSA a − 1 MSA = SSA/(a − 1) MSA/MSE

Factor B SSB b − 1 MSB = SSB/(b − 1) MSB/MSE

Error SSE (a − 1)(b − 1) MSE = SSE/((a − 1)(b − 1))

Total SSTOTAL ab − 1

The expected mean squares for fixed, random and mixed effects (A fixed and B random) models are:

source fixed effects random effects mixed effects

Factor A σ2 + b
a−1

∑
i α

2
i σ2 + bσ2

A σ2 + b
a−1

∑
i α

2
i

Factor B σ2 + a
b−1

∑
i β2

i σ2 + aσ2
B σ2 + aσ2

B

Error σ2 σ2 σ2

18.2 Example: When analyzing the data arising from the experiment that was run to compare the effects of
in-patient and out-patient protocols on the lab measurements of resting metabolic rate in humans (Example
15.5), we assume the following model:

Yijk = µ + αi + βj + εijk, εijk ∼ N(0, σ2) independent.

Here αi denotes the effect of the ith protocol and βj denotes the effect for the jth subject. We are mostly
interested in the effect for the three specific protocols in the experiment, and use the subject effect as blocking
variable. Hence α is a fixed effect, and β is a random effect. Therefore we assume that

∑a
i=1 αi = 0,

and βj ∼ N(0, σ2
B). Note that we also assumed that there is no protocol-patient interaction. This means

that there is for example no patient for which the resting metabolic rate is different for one specific protocol
only.
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For the ANOVA table we get:

Source Df SS MS F p

Protocol 2 0.024 0.012 0.140 0.870

Subject 8 23.243 2.905 34.740 < 0.001

Error 16 1.338 0.084

We conclude that we can not detect a protocol effect, but that blocking was important. Judging from the
Figure in Example 15.5, this makes a lot of sense!

18.3 Note: What if the assumption of no interaction is false? Substituting r = 1 into Table 17.12, we get:

source fixed effects random effects mixed effects

Factor A σ2 + b
a−1

∑
i α

2
i σ2 + σ2

AB + bσ2
A σ2 + σ2

AB + b
a−1

∑
i α

2
i

Factor B σ2 + a
b−1

∑
i β2

i σ2 + σ2
AB + aσ2

B σ2 + aσ2
B

Interaction σ2 + 1
(a−1)(b−1)

∑
i

∑
j γ2

ij σ2 + σ2
AB σ2 + σ2

AB

Error σ2 σ2 σ2

Hence, even if we falsely assume that there is no interaction between A and B, we still get valid F-tests in
the random effects model, and we get a valid F-test for the factor of interest in the mixed effects model!

18.2 Analysis of Covariance

The Analysis of Covariance (ANCOVA) model combines qualitative factors as used in an ANOVA with
quantitative predictors as used in a standard linear regression analysis:

Yij = µ + αi + βizij + εij

with i = 1, . . . , p, j = 1, . . . , ni , and εij ∼ N(0, σ2) independent. This model is useful to adjust for
a confounding variable (the covariate z) when making group comparisons in observational studies. It also
allows for more precision in group comparisons in randomized studies.

18.4 Note: Hypothesis of interest are:

(a) H1 : βi = β, ∀i. We first test if the relationship between Y and z is the same in all groups.

(b) H2 : αi = 0, ∀i. Assuming the slopes βi are the same, we then test for group differences.

18.5 Note: Rewriting the model as
Yij = µ + αi + βzij + γizij + εij,

we see that H1 implies no interaction between group and z (i. e. γi = 0), and if this is true, H2 implies that
there is no group effect (i. e. αi = 0).
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18.6 Theorem: To obtain the least squares estimates, we do the following:

(a) For the full model, fit simple linear regression models separately across groups:

β̂i =
∑ni

j=1(Yij − Ȳi·)(zij − z̄i·)
∑ni

j=1(zij − z̄i·)2
and µ̂i = Ȳi· − β̂iz̄i· for i = 1, . . . , p.

(b) Under H1, the common slope estimate is obtained by pooling the sums of squares across groups:

β̂ =
∑p

i=1

∑ni
j=1(Yij − Ȳi·)(zij − z̄i·)

∑p
i=1

∑ni
j=1(zij − z̄i·)2

and µ̂i = Ȳi· − β̂z̄i· for i = 1, . . . , p.

(c) Under H2, the group means are replaced by the overall mean:

β̂ =
∑p

i=1

∑ni
j=1(Yij − Ȳ··)(zij − z̄··)

∑p
i=1

∑ni
j=1(zij − z̄··)2

and µ̂ = Ȳ·· − β̂z̄··.

18.7 Theorem: The residual sums of squares are:

(a) RSS =
∑p

i=1

∑ni
j=1(Yij − Ȳi·)2 − ∑p

i=1 β̂2
i

∑ni
j=1(zij − z̄i·)2.

(b) RSSH1 =
∑p

i=1

∑ni
j=1(Yij − Ȳi·)2 − β̂2 ∑p

i=1

∑ni
j=1(zij − z̄i·)2.

(c) RSSH2 =
∑p

i=1

∑ni
j=1(Yij − Ȳ··)2 − β̂2 ∑p

i=1

∑ni
j=1(zij − z̄··)2.

18.8 Theorem: Let n =
∑p

i=1 ni.

(a) If H1 is true, then

F1 =
(RSSH1 − RSS)/(p − 1)

RSS/(n − 2p)
∼ Fp−1, n−2p.

(b) If H2 is true, then

F2 =
(RSSH2 − RSSH1)/(p − 1)

RSSH1/(n − p − 1)
∼ Fp−1, n−p−1.

(c) If both H1 and H2 are true, then

F2 =
(RSSH2 − RSS)/(2p − 2)

RSS/(n − 2p)
∼ F2p−2, n−2p.


