2 Review of Linear Algebra and Matrices

2.1 Vector Spaces

- **2.1 Definition:** A (real) vector space consists of a non empty set V of elements called vectors, and two operations:
 - (1) Addition is defined for pairs of elements in \mathbf{V} , \mathbf{x} and \mathbf{y} , and yields an element in \mathbf{V} , denoted by $\mathbf{x} + \mathbf{y}$.
 - (2) Scalar multiplication, is defined for the pair α , a real number, and an element $\mathbf{x} \in \mathbf{V}$, and yields an element in \mathbf{V} denoted by $\alpha \mathbf{x}$.

Eight properties are assumed to hold for $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{V}, \alpha, \beta, 1 \in \mathbb{R}$:

- (1) $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- (2) $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
- (3) There is an element in V denoted 0 such that 0 + x = x + 0 = x
- (4) For each $\mathbf{x} \in \mathbf{V}$ there is an element in \mathbf{V} denoted $-\mathbf{x}$ such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$
- (5) $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ for all α
- (6) $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$ for all α, β
- (7) 1x = x
- (8) $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ for all α, β
- **2.2 Definition:** Vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if $\sum_i c_i \mathbf{a}_i \neq 0$ unless $c_i = 0$ for all *i*.
- **2.3 Definition:** A linear basis or coordinate system in a vector space V is a set B of linearly independent vectors in V such that each vector in V can be written as a linear combination of the vectors in B.
- 2.4 Definition: The dimension of a vector space is the number of vectors in any basis of the vector space.
- 2.5 Definition: Let V be a p dimensional vector space and let W be an n dimensional vector space. A linear transformation L from V to W is a mapping (function) from V to W such that

$$\mathbf{L}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{L}(\mathbf{x}) + \beta \mathbf{L}(\mathbf{y})$$
 for every $\mathbf{x}, \mathbf{y} \in \mathbf{V}$ and all $\alpha, \beta \in \mathbb{R}$.

2.2 Vectors and Matrices

2.2.1 Matrix Notation and Elementary Properties

- **2.6 Definition:** Matrix: An $m \times n$ matrix with elements a_{ij} is denoted $\mathbf{A} = (a_{ij})_{m \times n}$.
- **2.7 Definition:** Vector: A vector of length n is denoted $\mathbf{a} = (a_i)_n$. If all elements equal 1 it is denoted $\mathbf{1}_n$.
- **2.8 Definition:** Diagonal Matrix:

diag
$$(a_1, \dots, a_n) \equiv \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \dots & 0 & a_n \end{pmatrix}$$
.

- **2.9 Definition:** Identity Matrix: $I_{n \times n} \equiv \text{diag}(\mathbf{1}_n)$.
- **2.10 Definition:** Matrix Transpose: If $\mathbf{A} = (a_{ij})_{m \times n}$, then $\mathbf{A}' \equiv (a'_{ij})_{n \times m}$ where $a'_{ij} = a_{ji}$.
- **2.11 Definition:** If A = A', then A is symmetric.
- **2.12 Definition:** Matrix Sum: If $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{m \times n}$, then $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}$.
- **2.13 Theorem:** Matrix sums satisfy $(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$.
- **2.14 Definition:** Matrix Product: If $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{n \times p}$, then $\mathbf{AB} = (c_{ij})_{m \times p}$, where $c_{ij} = \sum_k a_{ik} b_{kj}$.
- **2.15 Theorem:** Matrix products satisfy (AB)' = B'A'.
- **2.16 Definition:** Matrix Trace: The sum of the diagonal elements, $tr(\mathbf{A}) \equiv \sum_{i} a_{ii}$.
- **2.17 Theorem:** The trace satisfies $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$ if $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{m \times n}$, and $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$ if \mathbf{A} and \mathbf{B} are square matrices.

2.2.2 Range, Rank, and Null Space

- **2.18 Definition:** Range (Column Space): $\mathcal{R}(\mathbf{A}) \equiv$ the linear space spanned by the columns of \mathbf{A} .
- **2.19 Definition:** Rank: rank(\mathbf{A}) \equiv r(\mathbf{A}) \equiv the number of linearly independent columns of \mathbf{A} (i.e., the dimension of $\mathcal{R}(\mathbf{A})$), or equivalently, the number of linearly independent rows of \mathbf{A} .

- **2.21 Definition:** Null Space: $\mathcal{N}(\mathbf{A}) \equiv \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$. The nullity of \mathbf{A} is the dimension of $\mathcal{N}(\mathbf{A})$.
- **2.22 Theorem:** rank(\mathbf{A}) + nullity(\mathbf{A}) = n, the number of columns of \mathbf{A} .
- 2.23 Theorem: $r(\mathbf{A}) = r(\mathbf{A}') = r(\mathbf{A}'\mathbf{A}) = r(\mathbf{A}\mathbf{A}')$.

2.2.3 Inverse

- **2.24 Definition:** An $n \times n$ matrix **A** is invertible (or non-singular) if there is a matrix \mathbf{A}^{-1} such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_{n \times n}$. Equivalently, \mathbf{A} $(n \times n)$ is invertible if and only if rank $(\mathbf{A}) = n$.
- **2.25 Theorem:** Inverse of Product: $(AB)^{-1} = B^{-1}A^{-1}$ if A and B are invertible.

2.2.4 Inner Product, Length, and Orthogonality

- **2.26 Definition:** Inner product: $\mathbf{a}'\mathbf{b} = \sum_i a_i b_i$, where $\mathbf{a} = (a_i)$, $\mathbf{b} = (b_i)$.
- **2.27 Definition:** Vector norm (length): $||\mathbf{a}|| = \sqrt{\mathbf{a}'\mathbf{a}}$.
- **2.28 Definition:** Orthogonal vectors: $\mathbf{a} = (a_i)$ and $\mathbf{b} = (b_i)$ are orthogonal if $\mathbf{a}'\mathbf{b} = 0$.
- **2.29 Definition:** Orthogonal matrix: A is orthogonal if its columns are orthogonal vectors of length 1, or equivalently, if $A^{-1} = A'$.

2.2.5 Determinants

2.30 Definition: For a square matrix \mathbf{A} , $|\mathbf{A}| \equiv \sum_{i} a_{ij} A_{ij}$, where the cofactor $A_{ij} = (-1)^{i+j} |\mathbf{M}_{ij}|$, and \mathbf{M}_{ij} is the matrix obtained by deleting the *i*th row and *j*th column from \mathbf{A} .

2.31 Theorem:
$$\left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = ad - bc.$$

- **2.32 Theorem:** $|\mathbf{A}| = 0$, if and only if **A** is singular.
- **2.33 Theorem:** $|\text{diag}(a_1, ..., a_n)| = \prod_i a_i$.
- **2.34 Theorem:** $|AB| = |A| \cdot |B|$.
- **2.35 Theorem:** $\left| \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C} \end{pmatrix} \right| = |\mathbf{A}| \cdot |\mathbf{C}|.$

2.2.6 Eigenvalues

2.36 Definition: If $Ax = \lambda x$ where $x \neq 0$, then λ is an eigenvalue of A and x is a corresponding eigenvector.

Let **A** be a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.

- **2.37 Theorem:** (Spectral Theorem, a.k.a. Principal Axis Theorem) For any symmetric matrix **A** there exists an orthogonal matrix **T** such that: $\mathbf{T}'\mathbf{AT} = \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- **2.38 Theorem:** $r(\mathbf{A}) =$ the number of non-zero λ_i
- **2.39 Theorem:** $tr(\mathbf{A}) = \sum_i \lambda_i$.
- **2.40 Theorem:** $|\mathbf{A}| = \prod_i \lambda_i$.

2.2.7 Positive Definite and Semidefinite Matrices

2.41 Definition: A symmetric matrix A is positive semidefinite (p.s.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$ for all x.

Properties of a p.s.d matrix A:

- **2.42 Theorem:** The diagonal elements a_{ii} are all non-negative.
- 2.43 Theorem: All eigenvalues of A are nonnegative.
- **2.44 Theorem:** $tr(A) \ge 0$.
- **2.45 Definition:** A symmetric matrix A is called positive definite (p.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all non-zero x.

Properties of a p.d matrix A:

- 2.46 Theorem: All diagonal elements and all eigenvalues of A are positive.
- **2.47 Theorem:** tr(A) > 0.
- **2.48 Theorem:** $|\mathbf{A}| > 0$.
- **2.49 Theorem:** There is a nonsingular **R** such that $\mathbf{A} = \mathbf{R}\mathbf{R}'$ (necessary and sufficient for **A** to be p.d.).
- **2.50 Theorem:** A^{-1} is p.d.

2.2.8 Idempotent and Projection Matrices

2.51 Definition: A matrix **P** is idempotent if $\mathbf{P}^2 = \mathbf{P}$. A symmetric idempotent matrix is called a projection matrix.

Properties of a projection matrix **P**:

- **2.52 Theorem:** If **P** is an $n \times n$ matrix and rank(**P**) = r, then **P** has r eigenvalues equal to 1 and n r eigenvalues equal to 0.
- **2.53 Theorem:** $tr(\mathbf{P}) = rank(\mathbf{P})$.
- 2.54 Theorem: P is positive semidefinite.

2.3 **Projections**

2.55 Definition: For two vectors x and y, the projection of y onto x is

$$\operatorname{Proj}_{\mathbf{x}}(\mathbf{y}) = \frac{\mathbf{x}'\mathbf{y}}{\mathbf{x}'\mathbf{x}}\mathbf{x}.$$

2.56 Theorem: If V is a vector space and Ω is a subspace of V, then \exists two vectors, $\mathbf{w}_1, \mathbf{w}_2 \in V$ such that

- 1. $\mathbf{y} = \mathbf{w}_1 + \mathbf{w}_2 \quad \forall \mathbf{y} \in V,$
- 2. $\mathbf{w}_1 \in \Omega$ and $\mathbf{w}_2 \in \Omega^{\perp}$.
- **2.57 Theorem:** $\|\mathbf{y} \mathbf{w}_1\| \le \|\mathbf{y} \mathbf{x}\|$ for any $\mathbf{x} \in \Omega$. \mathbf{w}_1 is called the projection of \mathbf{y} onto Ω .

2.58 Definition: The matrix **P** that takes **y** onto \mathbf{w}_1 (i.e., $\mathbf{P}\mathbf{y} = \mathbf{w}_1$) is called a projection matrix.

2.59 Theorem: P projects y onto the space spanned by the column vectors of P.

- 2.60 Theorem: P is a linear transformation.
- **2.61 Theorem:** I P is a projection operator onto Ω^{\perp} .