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2 Review of Linear Algebra and Matrices

2.1 Vector Spaces

2.1 Definition: A (real) vector space consists of a non empty set V of elements called vectors, and two opera-
tions:

(1) Addition is defined for pairs of elements inV, x and y, and yields an element inV, denoted by x+y.

(2) Scalar multiplication, is defined for the pair α, a real number, and an element x ∈ V, and yields an
element inV denoted by αx.

Eight properties are assumed to hold for x,y, z ∈ V, α, β, 1 ∈ IR:

(1) x + y = y + x

(2) (x + y) + z = x + (y + z)

(3) There is an element in V denoted 0 such that 0 + x = x + 0 = x

(4) For each x ∈ V there is an element inV denoted −x such that x + (−x) = (−x) + x = 0

(5) α(x + y) = αx + αy for all α

(6) (α + β)x = αx + βx for all α, β

(7) 1x = x

(8) α(βx) = (αβ)x for all α, β

2.2 Definition: Vectors a1,a2, . . . ,an are linearly independent if
∑

i ciai #= 0 unless ci = 0 for all i.

2.3 Definition: A linear basis or coordinate system in a vector space V is a set B of linearly independent
vectors inV such that each vector inV can be written as a linear combination of the vectors in B.

2.4 Definition: The dimension of a vector space is the number of vectors in any basis of the vector space.

2.5 Definition: Let V be a p dimensional vector space and let W be an n dimensional vector space. A linear
transformation L fromV toW is a mapping (function) fromV toW such that

L(αx + βy) = αL(x) + βL(y) for every x,y ∈ V and all α, β ∈ IR.
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2.2 Vectors and Matrices

2.2.1 Matrix Notation and Elementary Properties

2.6 Definition: Matrix: Anm × n matrix with elements aij is denoted A = (aij)m×n.

2.7 Definition: Vector: A vector of length n is denoted a = (ai)n. If all elements equal 1 it is denoted 1n.

2.8 Definition: Diagonal Matrix:

diag(a1, . . . , an) ≡


a1 0 · · · 0
0 a2 · · · 0
...

... . . . 0
0 · · · 0 an

 .

2.9 Definition: Identity Matrix: In×n ≡ diag(1n).

2.10 Definition: Matrix Transpose: IfA = (aij)m×n, then A′ ≡ (a′ij)n×m where a′ij = aji.

2.11 Definition: IfA = A′, then A is symmetric.

2.12 Definition: Matrix Sum: IfA = (aij)m×n and B = (bij)m×n, then A + B = (aij + bij)m×n.

2.13 Theorem: Matrix sums satisfy (A + B)′ = A′ + B′.

2.14 Definition: Matrix Product: If A = (aij)m×n and B = (bij)n×p, then AB = (cij)m×p, where cij =∑
k aikbkj.

2.15 Theorem: Matrix products satisfy (AB)′ = B′A′.

2.16 Definition: Matrix Trace: The sum of the diagonal elements, tr(A) ≡∑
i aii.

2.17 Theorem: The trace satisfies tr(A + B) = tr(A) + tr(B) if A = (aij)m×n and B = (bij)m×n, and
tr(AB) = tr(BA) ifA and B are square matrices.

2.2.2 Range, Rank, and Null Space

2.18 Definition: Range (Column Space): R(A) ≡ the linear space spanned by the columns ofA.

2.19 Definition: Rank: rank(A) ≡ r(A) ≡ the number of linearly independent columns of A (i.e., the dimen-
sion of R(A)), or equivalently, the number of linearly independent rows ofA.

2.20 Theorem: Decreasing property of rank: rank(AB) ≤ min{rank(A), rank(B)}.
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2.21 Definition: Null Space: N (A) ≡ {x : Ax = 0}. The nullity of A is the dimension of N (A).

2.22 Theorem: rank(A) + nullity(A) = n, the number of columns of A.

2.23 Theorem: r(A) = r(A′) = r(A′A) = r(AA′).

2.2.3 Inverse

2.24 Definition: An n × n matrix A is invertible (or non-singular) if there is a matrix A−1 such that AA−1 =
A−1A = In×n. Equivalently, A (n × n) is invertible if and only if rank(A) = n.

2.25 Theorem: Inverse of Product: (AB)−1 = B−1A−1 ifA and B are invertible.

2.2.4 Inner Product, Length, and Orthogonality

2.26 Definition: Inner product: a′b =
∑

i aibi, where a = (ai), b = (bi).

2.27 Definition: Vector norm (length): ||a|| =
√

a′a.

2.28 Definition: Orthogonal vectors: a = (ai) and b = (bi) are orthogonal if a′b = 0.

2.29 Definition: Orthogonal matrix: A is orthogonal if its columns are orthogonal vectors of length 1, or equiv-
alently, ifA−1 = A′.

2.2.5 Determinants

2.30 Definition: For a square matrix A, |A| ≡ ∑
i aijAij , where the cofactor Aij = (−1)i+j |Mij |, andMij is

the matrix obtained by deleting the ith row and jth column fromA.

2.31 Theorem:
∣∣∣∣∣
(

a b
c d

)∣∣∣∣∣ = ad − bc.

2.32 Theorem: |A| = 0, if and only ifA is singular.

2.33 Theorem: |diag(a1, . . . , an)| =
∏

i ai.

2.34 Theorem: |AB| = |A| · |B|.

2.35 Theorem:
∣∣∣∣∣
(

A B
0 C

)∣∣∣∣∣ = |A| · |C|.
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2.2.6 Eigenvalues

2.36 Definition: IfAx = λx where x #= 0, then λ is an eigenvalue ofA and x is a corresponding eigenvector.

LetA be a symmetric matrix with eigenvalues λ1, . . . , λn.

2.37 Theorem: (Spectral Theorem, a.k.a. Principal Axis Theorem) For any symmetric matrix A there exists an
orthogonal matrix T such that: T′AT = Λ = diag(λ1, . . . , λn).

2.38 Theorem: r(A) = the number of non-zero λi

2.39 Theorem: tr(A) =
∑

i λi.

2.40 Theorem: |A| =
∏

i λi.

2.2.7 Positive Definite and Semidefinite Matrices

2.41 Definition: A symmetric matrix A is positive semidefinite (p.s.d.) if x′Ax ≥ 0 for all x.

Properties of a p.s.d matrix A:

2.42 Theorem: The diagonal elements aii are all non-negative.

2.43 Theorem: All eigenvalues of A are nonnegative.

2.44 Theorem: tr(A) ≥ 0.

2.45 Definition: A symmetric matrix A is called positive definite (p.d.) if x′Ax > 0 for all non-zero x.

Properties of a p.d matrix A:

2.46 Theorem: All diagonal elements and all eigenvalues ofA are positive.

2.47 Theorem: tr(A) > 0.

2.48 Theorem: |A| > 0.

2.49 Theorem: There is a nonsingular R such that A = RR′ (necessary and sufficient forA to be p.d.).

2.50 Theorem: A−1 is p.d.
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2.2.8 Idempotent and Projection Matrices

2.51 Definition: A matrix P is idempotent if P2 = P. A symmetric idempotent matrix is called a projection
matrix.

Properties of a projection matrix P:

2.52 Theorem: If P is an n × n matrix and rank(P) = r, then P has r eigenvalues equal to 1 and n − r
eigenvalues equal to 0.

2.53 Theorem: tr(P) = rank(P).

2.54 Theorem: P is positive semidefinite.

2.3 Projections

2.55 Definition: For two vectors x and y, the projection of y onto x is

Projx(y) =
x′y
x′x

x.

2.56 Theorem: If V is a vector space and Ω is a subspace of V , then ∃ two vectors, w1,w2 ∈ V such that

1. y = w1 + w2 ∀ y ∈ V ,

2. w1 ∈ Ω and w2 ∈ Ω⊥.

2.57 Theorem: ‖y − w1‖ ≤ ‖y − x‖ for any x ∈ Ω. w1 is called the projection of y onto Ω.

2.58 Definition: The matrix P that takes y onto w1 (i.e., Py = w1) is called a projection matrix.

2.59 Theorem: P projects y onto the space spanned by the column vectors of P.

2.60 Theorem: P is a linear transformation.

2.61 Theorem: I− P is a projection operator onto Ω⊥.


