2 Review of Linear Algebra and Matrices

2.1 Vector Spaces

2.1 Definition: A (real) vector space consists of a non empty set \mathbf{V} of elements called vectors, and two operations:
(1) Addition is defined for pairs of elements in \mathbf{V}, \mathbf{x} and \mathbf{y}, and yields an element in \mathbf{V}, denoted by $\mathbf{x}+\mathbf{y}$.
(2) Scalar multiplication, is defined for the pair α, a real number, and an element $\mathbf{x} \in \mathbf{V}$, and yields an element in \mathbf{V} denoted by $\alpha \mathbf{x}$.

Eight properties are assumed to hold for $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{V}, \alpha, \beta, 1 \in \mathbb{R}$:
(1) $\mathbf{x}+\mathbf{y}=\mathrm{y}+\mathrm{x}$
(2) $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$
(3) There is an element in \mathbf{V} denoted $\mathbf{0}$ such that $\mathbf{0}+\mathbf{x}=\mathbf{x}+\mathbf{0}=\mathbf{x}$
(4) For each $\mathbf{x} \in \mathbf{V}$ there is an element in \mathbf{V} denoted $-\mathbf{x}$ such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$
(5) $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$ for all α
(6) $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$ for all α, β
(7) $1 x=x$
(8) $\alpha(\beta \mathbf{x})=(\alpha \beta) \mathbf{x}$ for all α, β
2.2 Definition: Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if $\sum_{i} c_{i} \mathbf{a}_{i} \neq 0$ unless $c_{i}=0$ for all i.
2.3 Definition: A linear basis or coordinate system in a vector space \mathbf{V} is a set \mathbf{B} of linearly independent vectors in \mathbf{V} such that each vector in \mathbf{V} can be written as a linear combination of the vectors in \mathbf{B}.
2.4 Definition: The dimension of a vector space is the number of vectors in any basis of the vector space.
2.5 Definition: Let \mathbf{V} be a p dimensional vector space and let \mathbf{W} be an n dimensional vector space. A linear transformation \mathbf{L} from \mathbf{V} to \mathbf{W} is a mapping (function) from \mathbf{V} to \mathbf{W} such that

$$
\mathbf{L}(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha \mathbf{L}(\mathbf{x})+\beta \mathbf{L}(\mathbf{y}) \text { for every } \mathbf{x}, \mathbf{y} \in \mathbf{V} \text { and all } \alpha, \beta \in \mathbb{R}
$$

2.2 Vectors and Matrices

2.2.1 Matrix Notation and Elementary Properties

2.6 Definition: Matrix: An $m \times n$ matrix with elements $a_{i j}$ is denoted $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$.
2.7 Definition: Vector: A vector of length n is denoted $\mathbf{a}=\left(a_{i}\right)_{n}$. If all elements equal 1 it is denoted $\mathbf{1}_{n}$.
2.8 Definition: Diagonal Matrix:

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \equiv\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & a_{n}
\end{array}\right)
$$

2.9 Definition: Identity Matrix: $\mathbf{I}_{n \times n} \equiv \operatorname{diag}\left(\mathbf{1}_{n}\right)$.
2.10 Definition: Matrix Transpose: If $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$, then $\mathbf{A}^{\prime} \equiv\left(a_{i j}^{\prime}\right)_{n \times m}$ where $a_{i j}^{\prime}=a_{j i}$.
2.11 Definition: If $\mathbf{A}=\mathbf{A}^{\prime}$, then \mathbf{A} is symmetric.
2.12 Definition: Matrix Sum: If $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$ and $\mathbf{B}=\left(b_{i j}\right)_{m \times n}$, then $\mathbf{A}+\mathbf{B}=\left(a_{i j}+b_{i j}\right)_{m \times n}$.
2.13 Theorem: Matrix sums satisfy $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$.
2.14 Definition: Matrix Product: If $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$ and $\mathbf{B}=\left(b_{i j}\right)_{n \times p}$, then $\mathbf{A B}=\left(c_{i j}\right)_{m \times p}$, where $c_{i j}=$ $\sum_{k} a_{i k} b_{k j}$.
2.15 Theorem: Matrix products satisfy $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$.
2.16 Definition: Matrix Trace: The sum of the diagonal elements, $\operatorname{tr}(\mathbf{A}) \equiv \sum_{i} a_{i i}$.
2.17 Theorem: The trace satisfies $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$ if $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$ and $\mathbf{B}=\left(b_{i j}\right)_{m \times n}$, and $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$ if \mathbf{A} and \mathbf{B} are square matrices.

2.2.2 Range, Rank, and Null Space

2.18 Definition: Range (Column Space): $\mathcal{R}(\mathbf{A}) \equiv$ the linear space spanned by the columns of \mathbf{A}.
2.19 Definition: Rank: $\operatorname{rank}(\mathbf{A}) \equiv \mathrm{r}(\mathbf{A}) \equiv$ the number of linearly independent columns of \mathbf{A} (i.e., the dimension of $\mathcal{R}(\mathbf{A})$), or equivalently, the number of linearly independent rows of \mathbf{A}.
2.20 Theorem: Decreasing property of $\operatorname{rank}: \operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$.
2.21 Definition: Null Space: $\mathcal{N}(\mathbf{A}) \equiv\{\mathbf{x}: \mathbf{A x}=\mathbf{0}\}$. The nullity of \mathbf{A} is the dimension of $\mathcal{N}(\mathbf{A})$.
2.22 Theorem: $\operatorname{rank}(\mathbf{A})+\operatorname{nullity}(\mathbf{A})=n$, the number of columns of \mathbf{A}.
2.23 Theorem: $\mathrm{r}(\mathbf{A})=\mathrm{r}\left(\mathbf{A}^{\prime}\right)=\mathrm{r}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=\mathrm{r}\left(\mathbf{A} \mathbf{A}^{\prime}\right)$.

2.2.3 Inverse

2.24 Definition: An $n \times n$ matrix \mathbf{A} is invertible (or non-singular) if there is a matrix \mathbf{A}^{-1} such that $\mathbf{A A}^{-1}=$ $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n \times n}$. Equivalently, $\mathbf{A}(n \times n)$ is invertible if and only if $\operatorname{rank}(\mathbf{A})=n$.
2.25 Theorem: Inverse of Product: $(\mathbf{A B})^{-1}=B^{-1} \mathbf{A}^{-1}$ if \mathbf{A} and \mathbf{B} are invertible.

2.2.4 Inner Product, Length, and Orthogonality

2.26 Definition: Inner product: $\mathbf{a}^{\prime} \mathbf{b}=\sum_{i} a_{i} b_{i}$, where $\mathbf{a}=\left(a_{i}\right), \mathbf{b}=\left(b_{i}\right)$.
2.27 Definition: Vector norm (length): $\|\mathbf{a}\|=\sqrt{\mathbf{a}^{\prime} \mathbf{a}}$.
2.28 Definition: Orthogonal vectors: $\mathbf{a}=\left(a_{i}\right)$ and $\mathbf{b}=\left(b_{i}\right)$ are orthogonal if $\mathbf{a}^{\prime} \mathbf{b}=0$.
2.29 Definition: Orthogonal matrix: A is orthogonal if its columns are orthogonal vectors of length 1 , or equivalently, if $\mathbf{A}^{-1}=\mathbf{A}^{\prime}$.

2.2.5 Determinants

2.30 Definition: For a square matrix $\mathbf{A},|\mathbf{A}| \equiv \sum_{i} a_{i j} A_{i j}$, where the cofactor $A_{i j}=(-1)^{i+j}\left|\mathbf{M}_{i j}\right|$, and $\mathbf{M}_{i j}$ is the matrix obtained by deleting the i th row and j th column from \mathbf{A}.
2.31 Theorem: $\left|\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right|=a d-b c$.
2.32 Theorem: $|\mathbf{A}|=0$, if and only if \mathbf{A} is singular.
2.33 Theorem: $\left|\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right|=\prod_{i} a_{i}$.
2.34 Theorem: $|\mathbf{A B}|=|\mathbf{A}| \cdot|\mathbf{B}|$.
2.35 Theorem: $\left|\left(\begin{array}{cc}\mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C}\end{array}\right)\right|=|\mathbf{A}| \cdot|\mathbf{C}|$.

2.2.6 Eigenvalues

2.36 Definition: If $\mathbf{A x}=\lambda \mathbf{x}$ where $\mathbf{x} \neq 0$, then λ is an eigenvalue of \mathbf{A} and \mathbf{x} is a corresponding eigenvector.

Let \mathbf{A} be a symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
2.37 Theorem: (Spectral Theorem, a.k.a. Principal Axis Theorem) For any symmetric matrix \mathbf{A} there exists an orthogonal matrix \mathbf{T} such that: $\mathbf{T}^{\prime} \mathbf{A T}=\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
2.38 Theorem: $\mathrm{r}(\mathbf{A})=$ the number of non-zero λ_{i}
2.39 Theorem: $\operatorname{tr}(\mathbf{A})=\sum_{i} \lambda_{i}$.
2.40 Theorem: $|\mathbf{A}|=\prod_{i} \lambda_{i}$.

2.2.7 Positive Definite and Semidefinite Matrices

2.41 Definition: A symmetric matrix \mathbf{A} is positive semidefinite (p.s.d.) if $\mathbf{x}^{\prime} \mathbf{A x} \geq 0$ for all \mathbf{x}.

Properties of a p.s.d matrix \mathbf{A} :
2.42 Theorem: The diagonal elements $a_{i i}$ are all non-negative.
2.43 Theorem: All eigenvalues of \mathbf{A} are nonnegative.
2.44 Theorem: $\operatorname{tr}(\mathbf{A}) \geq 0$.
2.45 Definition: A symmetric matrix \mathbf{A} is called positive definite (p.d.) if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for all non-zero \mathbf{x}.

Properties of a p.d matrix \mathbf{A} :
2.46 Theorem: All diagonal elements and all eigenvalues of \mathbf{A} are positive.
2.47 Theorem: $\operatorname{tr}(\mathbf{A})>0$.
2.48 Theorem: $|\mathbf{A}|>0$.
2.49 Theorem: There is a nonsingular \mathbf{R} such that $\mathbf{A}=\mathbf{R} \mathbf{R}^{\prime}$ (necessary and sufficient for \mathbf{A} to be p.d.).
2.50 Theorem: \mathbf{A}^{-1} is p.d.

2.2.8 Idempotent and Projection Matrices

2.51 Definition: A matrix \mathbf{P} is idempotent if $\mathbf{P}^{2}=\mathbf{P}$. A symmetric idempotent matrix is called a projection matrix.

Properties of a projection matrix \mathbf{P} :
2.52 Theorem: If \mathbf{P} is an $n \times n$ matrix and $\operatorname{rank}(\mathbf{P})=r$, then \mathbf{P} has r eigenvalues equal to 1 and $n-r$ eigenvalues equal to 0 .
2.53 Theorem: $\operatorname{tr}(\mathbf{P})=\operatorname{rank}(\mathbf{P})$.
2.54 Theorem: \mathbf{P} is positive semidefinite.

2.3 Projections

2.55 Definition: For two vectors \mathbf{x} and \mathbf{y}, the projection of \mathbf{y} onto \mathbf{x} is

$$
\operatorname{Proj}_{\mathbf{x}}(\mathbf{y})=\frac{\mathbf{x}^{\prime} \mathbf{y}}{\mathbf{x}^{\prime} \mathbf{x}} \mathbf{x}
$$

2.56 Theorem: If V is a vector space and Ω is a subspace of V, then \exists two vectors, $\mathbf{w}_{1}, \mathbf{w}_{2} \in V$ such that

1. $\mathbf{y}=\mathbf{w}_{1}+\mathbf{w}_{2} \quad \forall \mathbf{y} \in V$,
2. $\mathbf{w}_{1} \in \Omega$ and $\mathbf{w}_{2} \in \Omega^{\perp}$.
2.57 Theorem: $\left\|\mathbf{y}-\mathbf{w}_{1}\right\| \leq\|\mathbf{y}-\mathbf{x}\|$ for any $\mathbf{x} \in \Omega . \mathbf{w}_{1}$ is called the projection of \mathbf{y} onto Ω.
2.58 Definition: The matrix \mathbf{P} that takes \mathbf{y} onto \mathbf{w}_{1} (i.e., $\mathbf{P y}=\mathbf{w}_{1}$) is called a projection matrix.
2.59 Theorem: \mathbf{P} projects \mathbf{y} onto the space spanned by the column vectors of \mathbf{P}.
2.60 Theorem: \mathbf{P} is a linear transformation.
2.61 Theorem: $\mathbf{I}-\mathbf{P}$ is a projection operator onto Ω^{\perp}.
