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3 Random Vectors

3.1 Definition: A random vector is a vector of random variables X =

 X1
...

Xn

 .

3.2 Definition: The mean or expectation of X is defined as E[X] =

 E[X1]
...

E[Xn]

 .

3.3 Definition: A random matrix is a matrix of random variables Z = (Zij). Its expectation is given by
E[Z] = (E[Zij ]).

3.4 Theorem: A constant vector a (vector of constants) and a constant matrix A (matrix of constants) satisfy
E[a] = a and E[A] = A.

3.5 Theorem: E[X + Y] = E[X] + E[Y].

3.6 Theorem: E[AX] = AE[X] for a constant matrix A.

3.7 Theorem: E[AZB + C] = AE[Z]B + C ifA,B,C are constant matrices.

3.8 Definition: IfX is a random vector, the covariance matrix ofX is defined as

cov(X) ≡ [cov(Xi,Xj)] ≡


var(X1) cov(X1,X2) · · · cov(X1,Xn)

cov(X2,X1) var(X2) · · · cov(X2,Xn)
...

... . . . ...
cov(Xn,X1) cov(Xn,X2) · · · var(Xn)

 .

An alternative form is

cov(X) = E[(X − E[X])(X − E[X])′] = E


 X1 − E[X1]

...
Xn − E[Xn]

 (X1 − E[X1], · · · ,Xn − E[Xn])

 .

3.9 Example: If X1, . . . ,Xn are independent, then the covariances are 0 and the covariance matrix is equal to
diag(σ2

1 , . . . ,σ
2
n) , or σ2In if the Xi have common variance σ2.

Properties of covariance matrices:

3.10 Theorem: Symmetry: cov(X) = [cov(X)]′.

3.11 Theorem: cov(X + a) = cov(X) if a is a constant vector.
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3.12 Theorem: cov(AX) = Acov(X)A′ ifA is a constant matrix.

3.13 Theorem: cov(X) is p.s.d.

3.14 Theorem: cov(X) is p.d. provided no linear combination of the Xi is a constant.

3.15 Theorem: cov(X) = E[XX′] − E[X](E[X])′

3.16 Definition: The correlation matrix of X is defined as

corr(X) = [corr(Xi,Xj)] ≡


1 corr(X1,X2) · · · corr(X1,Xn)

corr(X2,X1) 1 · · · corr(X2,Xn)
...

... . . . ...
corr(Xn,X1) corr(Xn,X2) · · · 1

 .

3.17 Note: Denote cov(X) by Σ = (σij). Then the correlation matrix and covariance matrix are related by

cov(X) = diag(
√

σ11, . . . ,
√

σnn) × corr(X) × diag(
√

σ11, . . . ,
√

σnn).

This is easily seen using corr(Xi,Xj) = cov(Xi,Xj)/
√

σiiσjj.

3.18 Example: If X1, . . . ,Xn are exchangeable, they have a constant variance σ2 and a constant correlation ρ
between any pair of variables. Thus

cov(X) = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...
... . . . ...

ρ ρ · · · 1

 .

This is sometimes called an exchangeable covariance matrix.

3.19 Definition: IfXm×1 and Yn×1 are random vectors,

cov(X,Y) = [cov(Xi, Yj)] ≡


cov(X1, Y1) cov(X1, Y2) · · · cov(X1, Yn)
cov(X2, Y1) cov(X2, Y2) · · · cov(X2, Yn)

...
... . . . ...

cov(Xm, Y1) cov(Xm, Y2) · · · cov(Xm, Yn)

 .

An alternative form is:

cov(X,Y) = E[(X − E[X])(Y − E[Y])′] = E


 X1 − E[X1]

...
Xm − E[Xm]

 (Y1 − E[Y1], · · · , Yn − E[Yn])

 .
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3.20 Theorem: IfA and B are constant matrices, then cov(AX,BY) = A cov(X,Y) B′.

3.21 Theorem: Let Z =
(

X
Y

)
. Then cov(Z) =

(
cov(X) cov(X,Y)

cov(Y,X) cov(Y)

)
.

3.22 Theorem: Let E[X] = µ and cov(X) = Σ and A be a constant matrix. Then

E[(X − µ)′A(X − µ)] = tr(AΣ).

3.23 Theorem: E[X′AX] = tr(AΣ) + µ′Aµ.

3.24 Example: Let X1, . . . ,Xn be independent random variables with common mean µ and variance σ2. Then
the sample variance S2 =

∑
i(Xi − X̄)2/(n − 1) is an unbiased estimate of σ2.

3.25 Theorem: If X ∼ N(µ,Σ) and A(= A′) and B are constant matrices, then X′AX and BX are indepen-
dently distributed iff BΣA = 0.

3.26 Example: Let X1, . . . ,Xn be independent normal random variables with common mean µ and variance
σ2. Then the sample mean X̄ =

∑n
i=1 Xi/n and the sample variance S2 are independently distributed.


