4 The Multivariate Normal Distribution

The following are three possible definitions of the multivariate normal distribution (MVN). Given a vector $\boldsymbol{\mu}$ and a positive semidefinite matrix $\boldsymbol{\Sigma}, \mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if:
4.1 Definition: For a positive definite $\boldsymbol{\Sigma}$, the density function of \mathbf{Y} is

$$
f_{\mathbf{Y}}(\mathbf{y})=(2 \pi)^{-n / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\} .
$$

4.2 Definition: The moment generating function (m.g.f.) of \mathbf{Y} is

$$
M_{\mathbf{Y}}(\mathbf{t}) \equiv E\left[e^{\mathbf{t}^{\prime} \mathbf{Y}}\right]=\exp \left\{\boldsymbol{\mu}^{\prime} \mathbf{t}+\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right\} .
$$

4.3 Definition: \mathbf{Y} has the same distribution as $\mathbf{A Z}+\boldsymbol{\mu}$, where $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{k}\right)$ is a random sample from $N(0,1)$ and $\mathbf{A}_{n \times k}$ satisfies $\mathbf{A A}^{\prime}=\boldsymbol{\Sigma}$.
4.4 Theorem: Definitions 4.1, 4.2, and 4.3 are equivalent for $\boldsymbol{\Sigma}>0$ (positive definite). Definitions 4.2 and 4.3 are equivalent for for $\boldsymbol{\Sigma} \geq 0$ (positive semidefinite). If $\boldsymbol{\Sigma}$ is not positive definite, then \mathbf{Y} has a singular MVN distribution and no density function exists.
4.5 Theorem: If $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ is a random sample from $N(0,1)$, then \mathbf{Z} has the $N\left(\mathbf{0}_{\mathbf{n}}, \mathbf{I}_{\mathbf{n} \times \mathbf{n}}\right)$ distribution.
4.6 Theorem: $E[\mathbf{Y}]=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{Y})=\boldsymbol{\Sigma}$.
4.7 Example: Let $\mathbf{Z}=\left(Z_{1}, Z_{2}\right)^{\prime} \sim N_{2}(\mathbf{0}, \mathbf{I})$, and let \mathbf{A} be the linear transformation matrix

$$
\mathbf{A}=\left(\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right) .
$$

Let $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ be the linear transformation

$$
\mathbf{Y}=\mathbf{A Z}=\binom{\left(Z_{1}-Z_{2}\right) / 2}{\left(Z_{2}-Z_{1}\right) / 2} .
$$

By Definition $4.3 \mathbf{Y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}=\mathbf{A A}^{\prime}$.
4.8 Theorem: If $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{C}_{p \times n}$ is a constant matrix of rank p, then $\mathbf{C Y} \sim N_{p}\left(\mathbf{C} \boldsymbol{\mu}, \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}\right)$.
4.9 Theorem: \mathbf{Y} is MVN if and only if $\mathbf{a}^{\prime} \mathbf{Y}$ is normally distributed for all non-zero constant vectors a.
4.10 Theorem: Let $\mathbf{Y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$, and let \mathbf{T} be an orthogonal constant matrix. Then $\mathbf{T Y} \sim N_{n}\left(\mathbf{T} \boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$.
4.11 Note: Theorem 4.10 says that mutually independent normal random variables with common variance remain mutually independent with common variance under orthogonal transformations. Orthogonal matrices correspond to rotations and reflections about the origin, i.e., they preserve the vector length:

$$
\|\mathbf{T y}\|^{2}=(\mathbf{T y})^{\prime}(\mathbf{T} \mathbf{y})=\mathbf{y}^{\prime} \mathbf{T}^{\prime} \mathbf{T} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{y}=\|\mathbf{y}\|^{2}
$$

Let $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ be partitioned as

$$
\mathbf{Y}=\binom{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}
$$

where \mathbf{Y}_{1} is $p \times 1$ and \mathbf{Y}_{2} is $q \times 1,(p+q=n)$. The mean and covariance matrix are correspondingly partitioned as

$$
\boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}} \quad \text { and } \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{cov}\left(\mathbf{Y}_{1}\right) & \operatorname{cov}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \\
\operatorname{cov}\left(\mathbf{Y}_{2}, \mathbf{Y}_{1}\right) & \operatorname{cov}\left(\mathbf{Y}_{2}\right)
\end{array}\right)
$$

4.12 Theorem: The marginal distributions are $\mathbf{Y}_{1} \sim N_{p}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ and $\mathbf{Y}_{2} \sim N_{q}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)$.
4.13 Theorem: Uncorrelated implies independent: \mathbf{Y}_{1} and \mathbf{Y}_{2} are independent if and only if $\boldsymbol{\Sigma}_{12}=\boldsymbol{\Sigma}_{21}^{\prime}=\mathbf{0}$.
4.14 Theorem: If $\boldsymbol{\Sigma}$ is positive definite, then the conditional distribution of \mathbf{Y}_{1} given \mathbf{Y}_{2} is

$$
\mathbf{Y}_{1} \mid \mathbf{Y}_{2}=\mathbf{y}_{2} \sim N_{p}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

4.15 Definition: For any positive integer d, χ_{d}^{2} is the distribution of $\sum_{i=1}^{d} Z_{i}^{2}$, where Z_{1}, \ldots, Z_{d} are independent and identically distributed $N(0,1)$ random variables.
4.16 Example: Let Y_{1}, \ldots, Y_{n} be independent $N\left(\mu, \sigma^{2}\right)$ random variables. Then \bar{Y} and S^{2} are independent and $(n-1) \times S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$.

In linear model theory, test statistics arise from sums of squares (special cases of quadratic forms) with χ^{2} distributions.
4.17 Theorem: If $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Sigma}$ is positive definite, then $(\mathbf{Y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\boldsymbol{\mu}) \sim \chi_{n}^{2}$.
4.18 Theorem: Let $\mathbf{Y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$ and $\mathbf{P}_{n \times n}$ be symmetric of rank r. Then $Q=(\mathbf{Y}-\boldsymbol{\mu})^{\prime} \mathbf{P}(\mathbf{Y}-\boldsymbol{\mu}) / \sigma^{2} \sim$ χ_{r}^{2} if and only if \mathbf{P} is idempotent (i.e. $\mathbf{P}^{2}=\mathbf{P}$), and hence a projection.
4.19 Note: Theorem 4.18 says that in the spherically symmetric case $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$, the only quadratic forms with χ^{2} distributions are sums of squares, i.e. squared lengths of projections: $\mathbf{x} \mathbf{P} \mathbf{x}=\|\mathbf{P} \mathbf{x}\|^{2}$.

Theorem 4.22 addresses conditions under which the difference of two χ^{2}-distributed quadratic forms is χ^{2} (to be applied to the ANOVA decomposition of the sum of squares). To prove the theorem, we will need to know when the difference of two projection matrices is a projection matrix.
4.20 Theorem: Assume that \mathbf{P}_{1} and \mathbf{P}_{2} are projection matrices and that $\mathbf{P}_{1}-\mathbf{P}_{2}$ is positive semidefinite. Then
(a) $\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{2} \mathbf{P}_{1}=\mathbf{P}_{2}$,
(b) $\mathbf{P}_{1}-\mathbf{P}_{2}$ is a projection matrix.
4.21 Note: The actual interpretation of Theorem 4.20 is:

1. \mathbf{P}_{1} is a projection onto a linear space Ω.
2. \mathbf{P}_{2} is a projection onto a subspace ω of Ω.
3. $\mathbf{P}_{1}-\mathbf{P}_{2}$ is a projection onto the orthogonal complement of ω within Ω.
4.22 Theorem: Let $\mathbf{Y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$ and $Q_{i}=(\mathbf{Y}-\boldsymbol{\mu})^{\prime} \mathbf{P}_{i}(\mathbf{Y}-\boldsymbol{\mu}) / \sigma^{2}$, where \mathbf{P}_{i} is a symmetric $n \times n$ matrix for $i=1,2$. If $Q_{i} \sim \chi_{r_{i}}^{2}$ and $Q_{1}-Q_{2} \geq 0$, then $Q_{1}-Q_{2}$ and Q_{2} are independent, and $Q_{1}-Q_{2} \sim \chi_{r_{1}-r_{2}}^{2}$.
4.23 Definition: The non-central chi-squared distribution with n degrees of freedom and non-centrality parameter λ, denoted $\chi_{n}^{2}(\lambda)$, is defined as the distribution of $\sum_{i=1}^{n} Z_{i}^{2}$, where Z_{1}, \ldots, Z_{n} are independent $N\left(\mu_{i}, 1\right)$ random variables, and $\lambda=\sum_{i=1}^{n} \mu_{i}^{2} / 2$.
4.24 Note: For any n we have $\chi_{n}^{2}(0) \equiv \chi_{n}^{2}$, which we refer to as the central chi-square distribution.
4.25 Theorem: If $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \mathbf{I})$, then $\mathbf{Y}^{\prime} \mathbf{Y}$ has moment generating function

$$
M_{\mathbf{Y}^{\prime} \mathbf{Y}}(t)=(1-2 t)^{-\frac{n}{2}} \exp \left\{\frac{\boldsymbol{\mu}^{\prime} \boldsymbol{\mu}}{2}\left[\frac{1}{1-2 t}-1\right]\right\}, \quad t<1 / 2
$$

4.26 Theorem: Let $\mathbf{Y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$ and $\mathbf{P}=\mathbf{P}^{\prime}$. Then $\mathbf{P}=\mathbf{P}^{2}$ of rank r if and only if

$$
\mathbf{Y}^{\prime} \mathbf{P Y} / \sigma^{2} \sim \chi_{r}^{2}\left(\boldsymbol{\mu}^{\prime} \mathbf{P} \boldsymbol{\mu} / 2 \sigma^{2}\right)
$$

4.27 Theorem: If $Y \sim \chi^{2}(n, \lambda)$, then $E[Y]=n+2 \lambda, \operatorname{var}[Y]=2(n+4 \lambda)$.
4.28 Theorem: If $Y \sim \chi_{n}^{2}$ with $n>2$, then $E\left[\frac{1}{Y}\right]=\frac{1}{n-2}$.
4.29 Theorem: $\chi_{n}^{2}(\lambda)$, like χ_{n}^{2}, has the convolution property.

