6 Properties of Least Squares Estimates

- 6.1 Note: The basic distributional assumptions of the linear model are
 - (a) The errors are unbiased: $E[\boldsymbol{\varepsilon}] = \mathbf{0}$.
 - (b) The errors are uncorrelated with common variance: $cov(\varepsilon) = \sigma^2 \mathbf{I}$.

These assumptions imply that $E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}$ and $\operatorname{cov}(\mathbf{Y}) = \sigma^2 \mathbf{I}$.

6.2 Theorem: If X is of full rank, then

- (a) The least squares estimate is unbiased: $E[\hat{\beta}] = \beta$.
- (b) The covariance matrix of the least squares estimate is $\operatorname{cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$.
- **6.3 Theorem:** Let rank(\mathbf{X}) = r < p and $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$, where $(\mathbf{X}'\mathbf{X})^{-}$ is a generalized inverse of $\mathbf{X}'\mathbf{X}$.
 - (a) \mathbf{P} and $\mathbf{I} \mathbf{P}$ are projection matrices.
 - (b) $\operatorname{rank}(\mathbf{I} \mathbf{P}) = \operatorname{tr}(\mathbf{I} \mathbf{P}) = n r.$
 - (c) $\mathbf{X}'(\mathbf{I} \mathbf{P}) = \mathbf{0}.$
- **6.4 Note:** In general, $\hat{\boldsymbol{\beta}}$ is not unique so we consider the properties of $\hat{\boldsymbol{\mu}}$, which is unique. It is an unbiased estimate of the mean vector $\boldsymbol{\mu} = E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}$:

$$E[\hat{\boldsymbol{\mu}}] = E[\mathbf{P}\mathbf{Y}] = \mathbf{P}E[\mathbf{Y}] = \mathbf{P}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta} = \boldsymbol{\mu},$$

since $\mathbf{PX} = \mathbf{X}$ by Theorem 6.3 (c).

- **6.5 Theorem:** Let $\hat{\mu}$ be the least-squares estimate. For any linear combination $d\mu$, $c'\hat{\mu}$ is the unique estimate with minimum variance among all linear unbiased estimates.
- **6.6** Note: The above shows that $\hat{\mu}$ is optimal in the sense of having minimum variance among all linear estimators. This result is the basis of the Gauss-Markov theorem on the estimation of estimable functions in ANOVA models, which we will study in a later lecture.
- 6.7 Note: We call $c'\hat{\mu}$ the Best Linear Unbiased Estimate (BLUE) of $c'\mu$.

- **6.8 Theorem:** If rank($\mathbf{X}_{n \times p}$) = p, then $\mathbf{a}' \hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}' \boldsymbol{\beta}$ for any \mathbf{a} .
- **6.9** Note: The Gauss-Markov theorem will generalize the above to the less than full rank case, for the set of estimable linear combinations $a'\beta$.

6.10 Definition: Let $rank(\mathbf{X}) = r$. Define

$$S^{2} = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})/(n-r) = RSS/(n-r).$$

This is a generalization of the sample variance.

- **6.11 Theorem:** S^2 is an unbiased estimate of σ^2 .
- **6.12** Note: If we assume that $\boldsymbol{\varepsilon}$ has a multivariate normal distribution in addition to the assumptions $E[\boldsymbol{\varepsilon}] = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, i. e. if we assume $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, we have $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$.

6.13 Theorem: Let $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, where $\operatorname{rank}(\mathbf{X}_{n \times p}) = p$. Then

- (a) $\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}),$
- (b) $(\hat{\boldsymbol{\beta}} \boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\hat{\boldsymbol{\beta}} \boldsymbol{\beta})/\sigma^2 \sim \chi_p^2$,
- (c) $\hat{\beta}$ is independent of S^2 ,
- (d) $RSS/\sigma^2 = (n-p)S^2/\sigma^2 \sim \chi^2_{n-p}$.