6 Properties of Least Squares Estimates

6.1 Note: The basic distributional assumptions of the linear model are
(a) The errors are unbiased: $E[\varepsilon]=\mathbf{0}$.
(b) The errors are uncorrelated with common variance: $\operatorname{cov}(\varepsilon)=\sigma^{2} \mathbf{I}$.

These assumptions imply that $E[\mathbf{Y}]=\mathbf{X} \boldsymbol{\beta}$ and $\operatorname{cov}(\mathbf{Y})=\sigma^{2} \mathbf{I}$.
6.2 Theorem: If \mathbf{X} is of full rank, then
(a) The least squares estimate is unbiased: $E[\hat{\boldsymbol{\beta}}]=\boldsymbol{\beta}$.
(b) The covariance matrix of the least squares estimate is $\operatorname{cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
6.3 Theorem: Let $\operatorname{rank}(\mathbf{X})=r<p$ and $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}$, where $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}$is a generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$.
(a) \mathbf{P} and $\mathbf{I}-\mathbf{P}$ are projection matrices.
(b) $\operatorname{rank}(\mathbf{I}-\mathbf{P})=\operatorname{tr}(\mathbf{I}-\mathbf{P})=n-r$.
(c) $\mathbf{X}^{\prime}(\mathbf{I}-\mathbf{P})=\mathbf{0}$.
6.4 Note: In general, $\hat{\boldsymbol{\beta}}$ is not unique so we consider the properties of $\hat{\boldsymbol{\mu}}$, which is unique. It is an unbiased estimate of the mean vector $\boldsymbol{\mu}=E[\mathbf{Y}]=\mathbf{X} \boldsymbol{\beta}$:

$$
E[\hat{\boldsymbol{\mu}}]=E[\mathbf{P Y}]=\mathbf{P} E[\mathbf{Y}]=\mathbf{P} \mathbf{X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta}=\boldsymbol{\mu},
$$

since $\mathbf{P X}=\mathbf{X}$ by Theorem 6.3 (c).
6.5 Theorem: Let $\hat{\mu}$ be the least-squares estimate. For any linear combination $\mathbf{d} \boldsymbol{\mu}, \mathbf{c}^{\prime} \hat{\mu}$ is the unique estimate with minimum variance among all linear unbiased estimates.
6.6 Note: The above shows that $\hat{\mu}$ is optimal in the sense of having minimum variance among all linear estimators. This result is the basis of the Gauss-Markov theorem on the estimation of estimable functions in ANOVA models, which we will study in a later lecture.
6.7 Note: We call $\mathbf{c}^{\prime} \hat{\boldsymbol{\mu}}$ the Best Linear Unbiased Estimate (BLUE) of $\boldsymbol{c}^{\prime} \boldsymbol{\mu}$.
6.8 Theorem: If $\operatorname{rank}\left(\mathbf{X}_{n \times p}\right)=p$, then $\mathbf{a}^{\prime} \hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}^{\prime} \boldsymbol{\beta}$ for any \mathbf{a}.
6.9 Note: The Gauss-Markov theorem will generalize the above to the less than full rank case, for the set of estimable linear combinations $\mathbf{a}^{\prime} \boldsymbol{\beta}$.
6.10 Definition: Let $\operatorname{rank}(\mathbf{X})=r$. Define

$$
S^{2}=(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}) /(n-r)=R S S /(n-r) .
$$

This is a generalization of the sample variance.
6.11 Theorem: S^{2} is an unbiased estimate of σ^{2}.
6.12 Note: If we assume that ε has a multivariate normal distribution in addition to the assumptions $E[\varepsilon]=\mathbf{0}$ and $\operatorname{cov}(\varepsilon)=\sigma^{2} \mathbf{I}$, i. e. if we assume $\varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$, we have $\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$.
6.13 Theorem: Let $\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$, where $\operatorname{rank}\left(\mathbf{X}_{n \times p}\right)=p$. Then
(a) $\hat{\boldsymbol{\beta}} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$,
(b) $(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) / \sigma^{2} \sim \chi_{p}^{2}$,
(c) $\hat{\boldsymbol{\beta}}$ is independent of S^{2},
(d) $R S S / \sigma^{2}=(n-p) S^{2} / \sigma^{2} \sim \chi_{n-p}^{2}$.

