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6 Properties of Least Squares Estimates

6.1 Note: The basic distributional assumptions of the linear model are

(a) The errors are unbiased: E[ε] = 0.

(b) The errors are uncorrelated with common variance: cov(ε) = σ2I.

These assumptions imply that E[Y] = Xβ and cov(Y) = σ2I.

6.2 Theorem: IfX is of full rank, then

(a) The least squares estimate is unbiased: E[β̂] = β.

(b) The covariance matrix of the least squares estimate is cov(̂β) = σ2(X′X)−1.

6.3 Theorem: Let rank(X) = r < p and P = X(X′X)−X′, where (X′X)− is a generalized inverse ofX′X.

(a) P and I − P are projection matrices.

(b) rank(I − P) = tr(I − P) = n − r.

(c) X′(I − P) = 0.

6.4 Note: In general, β̂ is not unique so we consider the properties of µ̂, which is unique. It is an unbiased
estimate of the mean vector µ = E[Y] = Xβ:

E[µ̂] = E[PY] = PE[Y] = PXβ = Xβ = µ,

since PX = X by Theorem 6.3 (c).

6.5 Theorem: Let µ̂ be the least-squares estimate. For any linear combination c′µ, c′µ̂ is the unique estimate
with minimum variance among all linear unbiased estimates.

6.6 Note: The above shows that µ̂ is optimal in the sense of having minimum variance among all linear esti-
mators. This result is the basis of the Gauss-Markov theorem on the estimation of estimable functions in
ANOVA models, which we will study in a later lecture.

6.7 Note: We call c′µ̂ the Best Linear Unbiased Estimate (BLUE) of c′µ.
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6.8 Theorem: If rank(Xn×p) = p, then a′β̂ is the BLUE of a′β for any a.

6.9 Note: The Gauss-Markov theorem will generalize the above to the less than full rank case, for the set of
estimable linear combinations a′β.

6.10 Definition: Let rank(X) = r. Define

S2 = (Y − Xβ̂)′(Y − Xβ̂)/(n − r) = RSS/(n − r).

This is a generalization of the sample variance.

6.11 Theorem: S2 is an unbiased estimate of σ2.

6.12 Note: If we assume that ε has a multivariate normal distribution in addition to the assumptions E[ε] = 0
and cov(ε) = σ2I, i. e. if we assume ε ∼ Nn(0, σ2I), we have Y ∼ Nn(Xβ, σ2I).

6.13 Theorem: Let Y ∼ Nn(Xβ, σ2I), where rank(Xn×p) = p. Then

(a) β̂ ∼ Np(β, σ2(X′X)−1),

(b) (β̂ − β)′(X′X)(β̂ − β)/σ2 ∼ χ2
p,

(c) β̂ is independent of S2,

(d) RSS/σ2 = (n − p)S2/σ2 ∼ χ2
n−p.


