Protein Bioinformatics (260.655)

Lecture 9: Quantitative Proteomics Tuesday, April 27, 2010

Robert N. Cole, Ph.D.

Mass Spectrometry and Proteomics Facility Johns Hopkins School of Medicine **371 Broadway Research Bldg**

733 N. Broadway St. Baltimore, MD 21205 Ph: (410) 614-6968

email: rcole@jhmi.edu

Topics

Protein identification by mass spectrometry

Relative quantification of proteins

Applications

How a Mass Spectrometers Measure Mass

Identifying Proteins by Mass Spectrometry

Three Methods

Bottom Up:

Proteins identified from **a few peptides** *Know cleavage site, peptide mass and sequence Do not know proteins actual size and modifications Problems: Sequence homology, seeing all peptides*

Top Down:Proteins identified from the intact proteinKnow protein's size and whether it is modifiedSequence usually from ends of proteinProblems: Size limitations, Internal sequences

Middle Down: Proteins identified from large sections of protein

Identifying Proteins from Peptide Sequence

(Many proteins in solution, gel bands or spots)

Sequencing Peptides by Fragmentation

Survey (Full MS or MS1) Scan of Peptides

Intensity

MS/MS (MS2) Scan of Peptide Fragments showing Amino Acid Sequence

Intensity

Tandem MS (MS/MS)

Uses Peptide Mass and Sequence Tag

Need Only One Peptide Mass with >3 Amino Acids Masses in Sequence (at least two preferred)

High Sample Complexity Tolerated

Protein modifications identified and mapped to an amino acid

High mass accuracy nice, but not required

Search Engines for Protein Identification from MS Data

Summary of Programs

Proteome Software ExPASy

www.proteomesoftware.com/ expasy.proteome.org.au

Free Programs

ProteinProspector	prospector.ucsf.edu	
XProteo	xproteo.com:2698	
Prowl	prowl.rockefeller.edu	
Mascot	www.matrixscience.com (Free < 300 ions)

Open Source Programs

OMSSA X! Tandem pubchem.ncbi.nlm.nih.gov/omssa/ www.thegpm.org/

Commerical Programs

Mascot Sequest Spectrum Mill Proteolynx www.matrixscience.com fields.scripps.edu/sequest/ www.chem.agilent.com/ www.waters.com/WatersDivision/

Quantitative Proteomics

Quantifying Individual Proteins in Complex Mixtures (Functional Proteomics)

Quantifying a Proteome Reveals

Changes in protein levels (*biomarkers, pathways, binding partners*)

Changes in protein modifications (*structure/function*)

Changes in subcellular localization (*trafficking*)

Kinetics

(protein turnover, modification dynamics)

Quantitative Proteomics Methods

Approach Methods (Gel or MS based)

Non-Labeling Gel matching, Densitometry, Spectral Counting, Peak Intensity, Multiple Reaction Monitoring (**MRM**)

Labeling

- Chemical Difference Gel Electrophoresis (**DIGE**) Isobaric Tags for Relative and Absolute Quantitation (**iTRAQ**) Isotope-Coded Affinity Tags (**ICAT**)
- Metabolic Radiolabeling Stable Isotope Labeling of Amino Acids in Cell Culture (**SILAC**)
- Enzymatic ¹⁸O-Labeling
- SpikingAbsolute Quantification (AQUA)Multiple Reaction Monitoring (MRM)Quantification Concatamers (QconCAT)

Best Approach?

There is <u>NO</u> one best approach.

All approaches are:

Complementary

different separation techniques different sets of proteins identified

Technically challenging sample preparation data acquisition data analysis

Require fractionation to dig deeper into proteome limited by dynamic range

Best Quantitative Proteomic Experiments

Defined question (i.e. hypothesis driven)

Defined system

Independently measurable phenotype

Sample preparation Reproducible Scalable Compatible buffer system

Typical Quantitative Proteomic Experiment

Sample Preparation (Most Important Step!)

Reproducibility

Protein Amount and Complexity

Buffer Composition Compatibility

Sample Preparation Must Be Reproducible and Standardized!

Biological Replicates

> Initial Protocol

Standardized Protocol

Reduce Sources of Variability: Technical: "good" < "bad hands" few < many steps

> Biological: cells < tissue < body fluids yeast < nematode < human

Protein Amount and Complexity Detect Low Abundance Proteins by Fractionating

4-12% SDS-PAGE, SimplyBlue stain

Quantitative Proteomics Methods

Non-Labeling Methods

- No additions to analysis
- Separate analysis of *Each* sample
- **Biological Variability**
- Technical Variability (Sample Prep and MS analysis)

Non-Labeling – Densitometry -1D Gel

Gel slice number	Name of protein
22	Polymeric immunoglobulin receptor
22	Transferrin
22	Vanin 1
21	1B-glycoprotein
21	Complement component 5
21	hGC-1 (human G-CSF- stimulated clone-1)
21	IgG Fc-binding protein
21	Mac-2-binding protein
18	-1-antichymotrypsin
18	Albumin

Comparing protein bands on same gel Quantify by densitometry Often more than one protein per band

No Labeling – Densitometry - 2D Gels Bacterial Strain #1 Bacterial Strain #2

Compare spots from different gels Quantify by relative spot volume Gel reproducibility and spot matching critical Gel warping for matching spots can warp out modification Often more than one protein per spot

No Labeling – MS Methods Spectral Counting

Each sample separate LCMS/MS experiment

Compares multiple LCMS/MS experiments Quantify each protein from: number of peptides from protein number of spectra for each peptide

 <u>CH60_HUMAN</u> Mass: 61016 Score: 1225 Queries matched: 31 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa chaperonin) (CPN60) (Heat shock
Check to include this hit in error tolerant search

Q	uery	Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide
~	11	417.1822	832.3498	832.3828	-0.0329	0	45	0.016	1	K.APGFGDNR.K
~	12	422.7433	843.4720	843.5066	-0.0346	0	46	0.017	1	K.VGEVIVTK.D
	13	430.7328	859.4510	859.4837	-0.0327	0	36	0.15	1	K.IPAMTIAK.N + Oxidation (M)
~	15	451.2499	900.4853	900.5280	-0.0428	0	52	0.0039	1	K.LSDGVAVLK.V
5	16	456.7806	911.5467	911.5804	-0.0337	0	59	0.00056	1	K.VGLQVVAVK.A
~	21	480.7447	959.4748	959.5036	-0.0288	0	45	0.017	1	R.VTDALNATR.A
7	24	595.7855	1189.5565	1189.6012	-0.0447	0	(57)	0.0011	1	K.BIGNIISDAMK.K
~	25	603.7720	1205.5294	1205.5962	-0.0668	0	60	0.00048	1	K.EIGNIISDAMK.K + Oxidation (M)
~	26	608.3099	1214.6052	1214.6507	-0.0455	0	73	2.2e-05	1	K.NAGVEGSLIVEK.I
7	27	617.2857	1232.5569	1232.5885	-0.0316	0	81	4e-06	1	K.VGGTSDVEVNEK.K
~	31	672.8375	1343.6605	1343.7085	-0.0480	0	64	0.00016	1	R.TVIIEQSWGSPK.V
~	34	714.8884	1427.7623	1427.8058	-0.0435	0	(65)	0.00014	1	R. GVMLAVDAVIAELK. K
~	35	714.8938	1427.7730	1427.8058	-0.0327	0	(73)	2.1e-05	1	R. GVMLAVDAVIAELK. K
7	36	722.8849	1443.7552	1443.8007	-0.0455	0	75	1.2e-05	1	R.GVMLAVDAVIAELK.K + Oxidation (M)
~	37	722.8934	1443.7722	1443.8007	-0.0285	0	(73)	2.2e-05	1	R.GVMLAVDAVIAELK.K + Oxidation (M)
Y	39	752.8643	1503.7141	1503.7490	-0.0349	0	90	4.3e-07	1	K.TLNDELEIIEGMK.F
~	40	760.8461	1519.6777	1519.7439	-0.0662	0	(89)	4.7e-07	1	K.TLNDELEIIEGMK.F + Oxidation (M)
3	45	640.3281	1917.9625	1918.0636	-0.1010	0	102	2.1e-08	1	K.ISSIQSIVDALEIANAHR.K
~	46	960.0327	1918.0509	1918.0636	-0.0127	0	(87)	5.1e-07	1	K.ISSIQSIVPALEIANAHR.K
Ţ	48	1019.5106	2037.0067	2037.0153	-0.0087	0	52	0.0015	1	R.IQEIIEQLDVTTSEYEK.E
~	51	1057.0537	2112.0929	2112.1323	-0.0394	0	116	6.8e-10	1	R.ALMLQGVDLLADAVAVTMGPK.G

Reproducibility of LCMS/MS system critical

No Labeling – MS Methods Peak Intensity

Each sample separate LCMS/MS experiment

3D Peak Intensity Map ^{m/z}

Time

Compares multiple LCMS/MS experiments Reproducibility of LCMS/MS system critical

Quantitative Proteomics Methods

Non-Labeling Methods

- No additions to analysis
- Separate analysis of Each sample
- **Biological and Technical Variability**

Labeling Methods

Typically adds steps to analysis

Simultaneous analysis of Many samples (Multiplexing)

Biological Variability, Reduces Technical Variability

Cuts instrument time (data collection) by 50-75%

Unlu et al. Electrophoresis 18:2071-2077, 1997

Novel Phosphorylation of Myofilament Protein Correlates with Myocardial Stunning

Three Fluorescent Cy Dyes

Cy2, Cy3, Cy5

 ϵ -amino group of lysine

Matched for Charge and MW

Third Cy Dye used as an Internal Standard

All possible protein spots overlaid on every gel.

Simplifies gel to gel matching.

Each spot has it's own internal standard spot for normalizing across gels.

Reduces experimental variations.

Accounts for differences in sample load.

¹⁸O-labeling Protocol

iTRAQ Tags

(Isobaric Tag for Relative and Absolute Quantitation)

8-plex iTRAQ Workflow

Quantifying Proteins using iTRAQ

Changes in Protein Levels

(biomarkers and pathways)

Phospholipid Growth Factor (S1P) on Pulmonary Endothelial Permeability

Guo Y et al (2007) Mol Cell Proteomics 6:689-696

iTRAQ Revealed Proteins More Abundant in S1P Stimulated Lipid Rafts

MRP is up-regulated using both methods

Guo Y et al (2007) Mol Cell Proteomics 6:689-6

MRP siRNA Attenuates S1P Stimulated Endothelial Barrier Enhancement

Guo Y et al (2007) Mol Cell Proteomics 6:689-69

Can more than 8 samples be analyzed using 8-plex iTRAQ?

Yes!

Experimental Design

Pool of all samples: Standard in all iTRAQ experiments

Repeat labeling of at least 1 sample in all iTRAQ experiments

Completely randomize labeling

Expected Result

iTRAQ 1 - Sample 1	iTRAQ 2 - Sample 1			
iTRAQ 1 - Pool	= iTRAQ 2 - Pool			

<u>iTRAQ 1 - Sample 2</u> iTRAQ 1 - Pool = <u>iTRAQ 2 - Sample 2</u> iTRAQ 2 - Pool Ratios for All Proteins in Sample 1 or Sample 2 Relative to Pool are the <u>Same</u> in iTRAQ 1 and iTRAQ 2

Micronutrient Deficiencies and Health of Undernourished

Child and Maternal Health Problems

Infant/ Child

- Poor growth Impaired development Disability
- Infection
- Chronic disease
- Childhood Death

Mother

Obstetric morbidity Infection/sepsis Anemia Death

Nutritional Deficiencies

Micronutrient Status Vitamin A, zinc, iron, iodine, folate, others

Serum Protein Profiles? 500 samples 75 iTRAQ experiments

Gates Foundation Grant, PI: Keith West, JHSPH

Changes in Protein Modifications

(structure/function)

Using iTRAQ to Quantify Site Specific Auto-Phosphorylation of the EGF Receptor Kinase

1 MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLS 51 LQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIP 101 LENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQEILHGAVRF 151 SNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNGSCW 201 GAGEENCOKLTKIICAOOCSGRCRGKSPSDCCHNOCAAGCTGPRESDCLV 251 CRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYV 301 VTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLS 351 INATNIKHFKNCTSISGDLHILPVAFRGDSFTHTPPLDPOELDILKTVKE 401 ITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNITSLGL 451 RSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCK 501 ATGOVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREFV 551 ENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVM 601 GENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGM 651 VGALLLLVVALGIGLFMRRRHIVRKRTLRRLLOERELVEPLTPSGEAPN 701 QALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIKELREA 751 TSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLD 801 YVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQH **Tyr**⁸⁶⁹ 851 VKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSY 901 GVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKC 951 wmidadsrpkfreliiefskmardpqrylviqgdermhlpsptdsnf \underline{Y} r Tyr^{998}

Qiu et al. 2009 Biochemistry 48: 6624-6632

Experimental Design

Expressed EGFR Kinase

Incubated +/- ATP and +/- kinase inhibitors

Isolated EGFR Kinase

Resolved EGFR Kinase by SDS-PAGE

In gel digest, iTRAQ label, SCX, LCMS/MS

Qiu et al. 2009 Biochemistry 48: 6624-6632

Rank	Score	%60V	Name	Species	115:113	117:113	121:113
1	70	65	Epidermal growth factor receptor precursor - Homo sapiens (Human)	HUMAN	1.10	1.15	1.3
2	9	49	Keratin, type II cytoskeletal 1 - Homo sapiens (Human)	HUMAN	0.76	1.00	1.2
3	8	43	Exportin-2 - Homo sapiens (Human)	HUMAN	0.98	0.89	1.3
4	5	36	Exportin-4 - Homo sapiens (Human)	HUMAN	0.98	0.98	1.2
5	4	39	Exportin-1 - Homo sapiens (Human)	HUMAN	0.94	1.00	1.2
6	2	46	Exportin-T - Homo sapiens (Human)	HUMAN	1.07	1.19	1.5
7	2	34	Keratin, type I cytoskeletal 10 - Homo sapiens (Human)	HUMAN	0.70	0.75	1.2
8	2	71	Uncharacterized protein C14orf139 - Homo sapiens (Human)	HUMAN	1.15	0.87	1.1

>35 peptide IDs with at least 95% confidence Same amount of EGRF in all gel bands

(Ratios relative to No ATP sample labeled with 113)

+SRC +EGFR kinase kinase +ATP **Inhibitor Inhibitor**

EGFR Top Hit

Phosphotyrosines:Increasewith ATP or Inhibitor to another kinase,
but <u>NOT</u> with an Inhibitor to EGFR Kinase.Phosphothreonines:No change

No change

Phosphoserines:

Alone Inhibitor Inhibitor Confidence **Phosphate Modification** 115:113 117:113 121:113 Sequence **ELVEPLTPSGEAPNQALLR** 99 Phospho(T)@7 1.14 1.01 1.52 99 LLGAEEKE**Y**HAEGGK Phospho(Y)@9 16.98 1.71 14.62 99 LLGAEEKE**Y**HAEGGKVPIK 5.18 1.27 3.99 Phospho(Y)@9 99 **LLGAEEKEYHAEGGKVPIK** Phospho(Y)@9 6.33 1.27 4.89 99 **MHLPSPTDSNFY**R Phospho(Y)@12 2.71 1.63 2.88 99 **MHLPSPTDSNFYR** Phospho(Y)@12 2.24 1.15 2.28 99 **MHLPSPTDSNFY**R Phospho(Y)@12 0.78 1.75 2.00 99 MHLP**S**PTDSNFYR Phospho(S)@5 0.77 0.80 0.98 70 MHLP**S**PTDSNFYR Phospho(S)@5 1.10 1.21 1.74

Qiu et al. 2009 Biochemistry 48: 6624-6632

+EGFR

Kinase

+ATP

+Scr

Kinase

Kinetics

(protein turnover, modification dynamics)

Which peptide is a better substrate?

Expermental Design:

Wade Gibson

Two time courses (one for each peptide)

Two iTRAQ experiments (one for each time course)

Substrate and products labeled with same iTRAQ tag at each time point reagent

Different iTRAQ label for different time points

<u>Time (hr)</u>	iTRAQ Labe	<u> </u>				
0	113	Mix all iTRAO labolad				
0.5	114	substrates and proteins from <i>all</i> time points				
1	115					
2	116					
3	117	Run one MS analysis (LCMS/MS)				
4.5	118	for <i>each</i> time course				
6	119					
24	121					

Software for Identifying and Quantifying Proteins

Label Free Sieve MSQuant

www.thermo.com msquant.alwaysdata.net

Labeling ProteinPilot www.absciex.com Mascot www.matrixscience.com Scaffold Q+ www.proteomesoftware.com Protein Discoverer www.thermo.com