Protein Bioinformatics Part I: Access to information

260.655 March 30, 2010 Jonathan Pevsner, Ph.D. pevsner@kennedykrieger.org

Outline for today

Introduction

Accessing information Entrez Gene Accession numbers and RefSeq Protein Databases: UniProt, ExPASy Three genome browsers: NCBI, UCSC, Ensembl

Four perspectives on individual proteins Perspective 1: Protein families (domains and motifs) Perspective 2: Physical properties (3D structure) Perspective 3: Localization Perspective 4: Function

Course objectives

To provide students with the ability to analyze and understand data from high-throughput proteomics experiments. At the conclusion of the course the students will be able to:


(a) Define protein physical properties and analyze protein structure.

(b) Explain how proteins are studied experimentally and how data are generated in high-throughput experiments.

(c) Describe the computational methods used to study protein structure and interactions.

(d) Explain the algorithms, statistical techniques and software tools used to analyze high-throughput proteomics data.

Syllabus (through April)				
Tues 3/30	Protein bioinformatics I (Pevsner)			
Thurs 4/1	Protein bioinformatics II: Evolution (Pevsner)			
Tues 4/6	Physical properties of amino acids (Prigge)			
Thurs 4/8	Protein structure essentials (Prigge)			
Tues 4/13	How to visualize proteins (Prigge)			
Thurs 4/15	Why proteins fold (Prigge)			
Tues 4/20	Structure determination and databases (Prigge)			
Thurs 4/22	Crystallography practicum (Prigge/Bosch)			
Tues 4/27	Quantitative proteomics (Cole)			
Thurs 4/29	Proteomics and systems biology (Bosch)			

Syllabus (through May)

Tues 5/4	Protein Structure: Databases & classification (Ruczinski)
Thurs 5/6	Protein secondary struct. prediction (Ruczinski)
Tues 5/11	Protein tertiary structure prediction (Ruczinski)
Thurs 5/13	Protein structure prediction (CASP) (Ruczinski)
Tues 5/18	Review (Prigge/Ruczinski/Pevsner)
Thurs 5/20	Final Exam + Practicum

Website

The course website is: http://www.biostat.jhsph.edu/~iruczins/teaching/ 260.655/

(or Google "ingo teaching")

Literature references

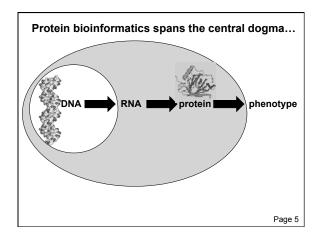
You are encouraged to read original source articles. They will enhance your understanding of the material. Readings are optional but recommended.

Computer labs

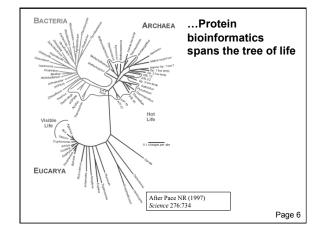
There are several computer labs (details to follow).

Grading

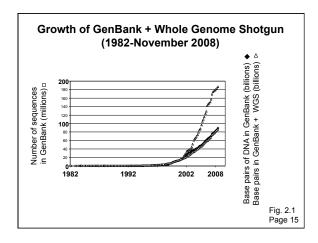
Grading is based on assignments and on a final exam.

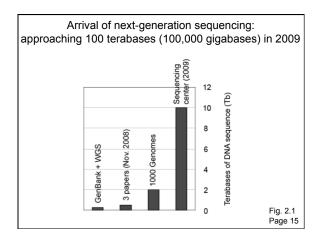

What is bioinformatics?

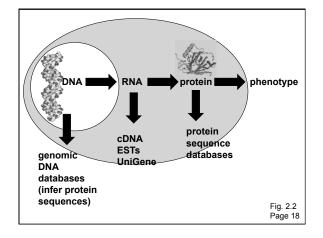
Interface of biology and computers

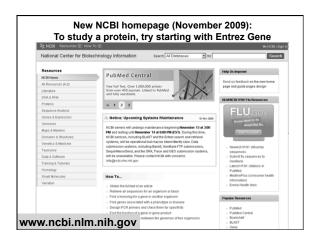

Analysis of proteins, genes and genomes using computer algorithms and computer databases

• Genomics is the analysis of genomes. The tools of bioinformatics are used to make sense of the billions of base pairs of DNA that are sequenced by genomics projects.

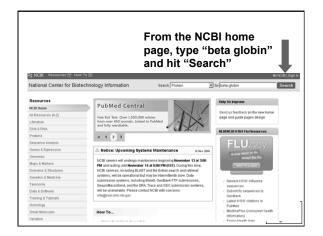

• Protein bioinformatics refers to the use of computational biology tools to understand protein structure and function, including high throughput approaches





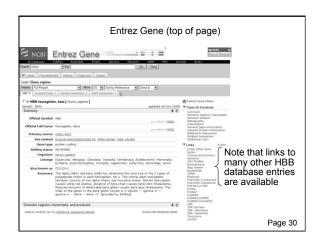

Outline for today

Introduction

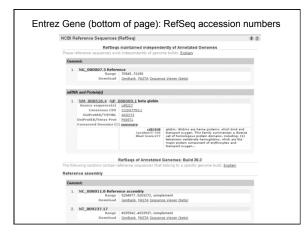

Accessing information

Entrez Gene Accession numbers and RefSeq Protein Databases: UniProt, ExPASy Three genome browsers: NCBI, UCSC, Ensembl

Four perspectives on individual proteins Perspective 1: Protein families (domains and motifs) Perspective 2: Physical properties (3D structure) Perspective 3: Localization Perspective 4: Function



ARCH SITE	-	PubMed All Databases	- Н,	iman Ge	morn	e GenBank Map Viewer		8
		Search across databases beta globin				GO Clear Help		
- Result	coun	ts displayed in gray indicate one or more terms not found						
7474	U.	PubMed: biomedical literature citations and abstracts		198	U	Books: online books		
5635	Ø	PubMed Central: free, full text journal articles		116	×	ONIM: online Mendelian Inheritance in Man		
3	Ø	Site Search: NCBI web and FTP sites		none	1	OMIA: online Mendelian Inheritance in Animals		
			_					
1783		Nucleatide: Core subset of nucleatide sequence records		240	46	dbGaP: genotype and phenotype		
2019	1	EST: Expressed Sequence Tag records		72	Ø	UniGene: gene-oriented clusters of transcript sequences		
3	Ð	655: Genome Survey Sequence records		none	8	CDD: conserved protein domain database	÷	
1521 •	8	Protein: sequence database		501	ø	3D Domains: domains from Entrez Structure		
13	111	Genome: whole genome sequences		20	6	UniSTS: markers and mapping data		
126	÷.	Structure: three-dimensional macromolecular structures		28	00	PopSet: population study data sets		
none	è.	Taxonomy: organisms in GenBank		737	(1)	GEO Profiles: expression and molecular abundance profiles		
none		SNP: single nucleotide polymorphism		10	-	GEO DataSets: experimental sets of GEO data		
93	X	Genes gene-centered information	ſ	F۵	Ш	ow the link to "	۰ ۵ ٬	or
none	ñ.	SRA: Short Read Archive	ω.	10			00	71
none	>	BioSystems: Pathways and systems of interacting malerules		none	8	PubChem Compound: unique small molecule chemical structures		
		HomoloGene: eukaryotic homology groups		86	T	PubChem Substance: deposited chemical substance records		F



Entrez Gene is in the header Note the "Official Symbol" HBB for beta globi Note the "limits" option	n	
S NCBI Entrez Gene		My NCBI 22 [Sign In] [Register]
All Databases Publied Noviection Protein Genome Structure Oliffit Phile Search Gene • for beta globin Go Clear Save Sr	Journals Books	
	<u>101.111</u>	
Limits PleviewIndex History Clipboard Details		
Steplay Jummary Show 20 Sort by Relevance Send to .		
All: 93 Current Only: 89 Genes Genomes: 75 SNP GeneView: 50 🙀		
Items 1 = 20 of 93 Page 1 of 5 Next	Recent activity	
t: HBB Order cDNA clone, Links		Turn.Off Clear
Official Symbol HBB and Name: hemoglobin, beta [Homo sapiens] Other Aliases: CD113t-C, beta-globin	Q beta globin (93)	
Other Designations: beta globin; beta globin chain; hemoglobin beta chain Chromosome: 11: Location: 11p15.5	Q beta globin (1521)	Gene
Annotation: Chromosome 11, NC_000011.9 (52486985248301, complement)	Q hbb (1674)	
MIM: 141900 GeneID: 3043	A 100 (1674)	Protein
□ 2: LOC100136291 Links		» See more
beta-globin [Oncorhynchus mykiss] Other Aliases: http://		
GenelD: 100136291		
□ 3: LOC689064 Links		
Interim Symbol LOC689064 and Name: beta-globin [Raffus norvegicus] Other Designations: III beta-3 globin: beta-hemoglobin		
Chromosome: 1; Location: 1q32		
Annotation: Chromosome 1, NC_005100.2 (161578124161585968, complement) GeneID: 689064		

Outline for today

Introduction

Accessing information Entrez Gene

Accession numbers and RefSeq Protein Databases: UniProt, ExPASy Three genome browsers: NCBI, UCSC, Ensembl

Four perspectives on individual proteins Perspective 1: Protein families (domains and motifs) Perspective 2: Physical properties (3D structure) Perspective 3: Localization

Perspective 4: Function

Access to sequences: Entrez Gene at NCBI

Entrez Gene is a great starting point: it collects key information on each gene/protein from major databases. It covers all major organisms.

RefSeq provides a curated, optimal accession number for each DNA (NM_000518 for beta globin DNA corresponding to mRNA) or protein (NP_000509)

Accession numbers are labels for sequences

NCBI includes databases (such as GenBank) that contain information on DNA, RNA, or protein sequences. You may want to acquire information beginning with a query such as the name of a protein of interest, or the raw nucleotides comprising a DNA sequence of interest.

DNA sequences and other molecular data are tagged with accession numbers that are used to identify a sequence or other record relevant to molecular data.

Page 26

What	is an accession number?	
sequence.	on number is label that used to iden It is a string of letters and/or number s to a molecular sequence.	
Examples (all for retinol-binding protein, RBP4):
X02775 NT_030059 Rs7079946	GenBank genomic DNA sequence Genomic contig dbSNP (single nucleotide polymorphism)	DNA
N91759.1 NM_006744	An expressed sequence tag (1 of 170) RefSeq DNA sequence (from a transcript)	RNA
NP_007635 AAC02945 Q28369 1KT7	RefSeq protein GenBank protein SwissProt protein Protein Data Bank structure record	protein
		Page 27

NCBI's important RefSeq project: best representative sequences

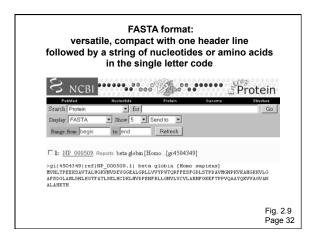
RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon "reference" version of a sequence.

RefSeq identifiers include the following formats:

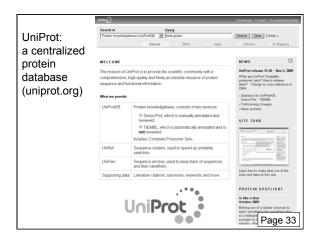
Complete genome Complete chromosome Genomic contig mRNA (DNA format) Protein NC_###### NC_###### NT_####### NM_####### e.g. NM_006744 NP_###### e.g. NP_006735

Entrez Gene (botto	m of page	e): non-RefSeg accessions
· · ·		hlighting usefulness of RefSeg)
Genomic	M36640.1	AAA12634.1
Genomic	582767.1	AAD14420.1
Genomic	U01317.1	AAA16334.1
		AAA16335.1
Genomic	U01317.1	AAA16334.1
		AAA16335.1
Genomic	U20223.1	AA860348.1
Genomic	<u>Y00498.1</u>	CAA23757.1
Genomic	<u>V00499.1</u>	CAA23758.1
mRNA	AF117710.1	AAD19595.1
mRNA	AF181832.1	AAF00488.1
mRNA	AF181989.1	AAF00409.1
mRNA	AF349114.1	AAK29639.1
mRNA	AK311825.1	BAG24767.1
mRNA	AV136510.1	AAN11320.1
mRNA	AY509193.1	AAR95398.1
mRNA	BC007075.1	AAH07075.1
mRNA	CR536530.1	CAG28767.1
mRNA	CR541913.1	CAG46711.1
mRNA	CR590940.1	None
mRNA	CR594264.1	None
mRNA	CR603426.1	None
mRNA	CR609101.1	None
mRNA	CR621681.1	None
mRNA	EU694432.1	ACD39349.1
mRNA	M11428.1	AAA52633.1
mRNA	M25079.1	AAA35597.1
mRNA	M25113.1	AAA35966.1
mRNA	<u>V00497.1</u>	CAA23755.1
mRNA	<u>V00500.1</u>	CAA23759.1
Synthetic	AM292527.1	CAL37415.1
Synthetic	AM393351.1	CAL38229.1
Synthetic	DQ893159.2	ABM94085.1
Synthetic	DQ896453.2	A0M07452.1
Synthetic	EU176774.1	ABW03575.1
Protein Acce	usion Links	
095408	GenPept	UniProtKB/TrEMBL

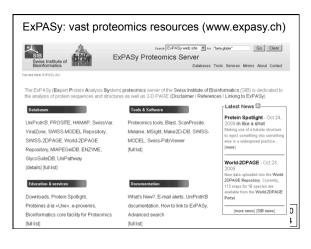
FutMed Search Prote Display Genf Range from [Pept V Show 5 Send to V Degin to ond Pettoes DNP CDD P MPAD - Refresh	Entrez Protein: accession, organism, literature
□ 1: <u>NP 00</u>	0509. Reports beta globin [Homo[gi:4504349]	
Comment E	eatures Sequence	
LOCUS DEFINITION ACCESSION FERSION DESOURCE KETWORDS SOURCE ORGANISH	NP_00009 147 an linear PFI 12-0CT-2008 NP_00009 c1(40049 NP_00009 c1(40049 NPTR01 excesses NP_000016 NPTR01 excesses NP_000016 NPTR01 excesses NP_000016 NPTR01 excesses NP_000016 NPTR01 excesses NP_000016 NPTR01 excesses NP_000016 NPTR01 PR_000000 NPTR01 NPTR01 PR_000000 NPTR01 NPTR01 PR_000000 NPTR01	
AUTHORS	1 (residues 1 to 147) Bernaudin,F., Verlhac,S., Chevret,S., Torres,H., Coic,L., Arnaud,C., Raudem,A., Hau,I., Neonato,M.G. and Delacourt,C.	
	G&PD deficiency, absence of alpha-thalassesia and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebrai velocities in patients with sickle cell amenia	
JOURNAL PUBMED REMARK	Blood (2008) In press <u>10772456</u> GeneRIF: Observational study of gene-disease association. (NuCE Navigator)	
AUTHORS	Publication Status: Available-Online prior to print 2 (residues 1 to 147) Crompton,P.D., Traone,B., Kayentao,K., Doumbo,S., Ongolha,A., Diakite,S.A., Krause,H.A., Doumaba,P., Kone,Y., Weiss,G., Hang,C.Y., Doumbia,S., Ouindo,A., Fairburse,P.H., Hiller,L.H., Pierce,B.H. and Doumbo,O.K.	
TITLE	Fierce, s.k. and Boundo, U.K. Sickle Cell Trait is Associated with a Belayed Onset of Halaria: Implications for Time-to-Event Analysis in Clinical Studies of Nalaria	Fig. 2.8 Page 3



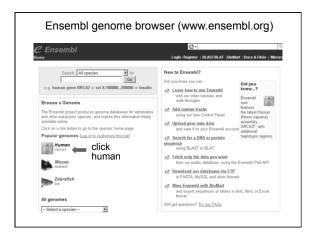
<pre>in the one-letter amino acid code if the one-</pre>		features	s of a protein, and its sequence	
<pre>implement in the set of the</pre>	in	the one	-letter amino acid code	
<pre>implement in the set of the</pre>				
<pre>implement in the set of the</pre>				
<pre>implement in the set of the</pre>				
<pre>implement in the set of the</pre>	Sire		4 -	
<pre>/*experiment-"experimental evidence, no additional details recorded" //otation[]] iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</pre>	Site			
<pre>/ hoster*S-mitrooylation site* //itation*[]] isite //itation*[] //itation*[] //otation*[] //otation*[] //itation*[] /</pre>				
/distion"[] iiii // copyright(opyright(op) // copyright(op) // copyright(r	ecorded"	
<pre>bite 121</pre>				
<pre>// faite_type="glycoglation" // experiment="experimental evidence, no additional details recorded" // bote="glycotion site" // clistion=[g] // clistion=[</pre>				
<pre>/*speciment-"experimental evidence, no additional details recorded" / host="givenion site" / host="givenion site" / host="givenion" / demser="HBB" / de</pre>	Site			
recorded" /ottation*[2] 1.187 /dem_synonym*Clll3t-C* /dem_synonym*Clll3t-C* /dem_synonym*Clll3t-C* /dem_sref**Cfl3iCt09755.1* /dem_sref**M00:1627; /dem_sref***M00:1627; /dem_sref************************************				
/ hoster*giyvation Sick* /ottationer[0] 1147 /gene=*HBB* /gene=*HBB* /gene=*HBB* /gene=*HBB* /gene=*HBB* /gene**HBB* /gene**HBB* /gene**HBB* /gene**** /gene** /gene**				
/ottation=(9) .1.47 /generalBBB /coded py=mp="fillint" /obsdy_p=mp="fillint" /obs_xref=""code3"/code3"/sile="fillint" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref=""mode".4227" /ob_xref="mode".427" /ob_xref="mode".427" /ob_xref="mode".427" /ob				
/ demos = MHS # / demos = MHS # / demos = MHS # / demos = MHS = MHS = demos				
<pre>/ dems_syronyme"Ctilist_C" / doms_yref="">/ doms_stellist_C" / dom_stel="">/ dom_stellist_C.94" / db_stel="">/ doms_stellist_C.94" / db_stel="">/ db_stellist_C.94" / db_stellist_C.97751 / db_stellist_C.97751 / db_stellist_C.97751 // db_stellist_C.97751</pre>	CDS	1		
<pre>/ coded by="MIT (DOSIS.4.15)494" / db_wcet="COSIS-CENTS73.5.1" / db_wcet="Cosis-CENTS73.5.1" / db_wcet="REFN:0007" / db_wcet="REFN:0007" / db_wcet="REFN:0007" / db_wcet="REFN:0007" / db_wcet="REFN:0007" / db_wcet="REFN:0007" // db_wcet="REFN:000</pre>				
/db_wref="CGB3CCGB7753.1" /db_wref="CGB3CCGB7753.1" /db_wref="AMBC:46227" /db_wref="AMBC:46227" /db_wref="AMBC:46227" /db_wref="AMBC:46227" /db_wref="AMBC:46227" /db_wref="AmBC:4627" /db_wref="Am				
/db_xref="Gene B10303" /db_xref=NRS0:4027" /db_xref="RRS0:0786" /db_xref="RRS11:141300" /db_xref="RRS11:141300" 1 wyhitpeeks avtalwykyn vdevgogalg rilvyyputg rffesfydls tpdavmgnpk				
/db_xref="HRN: 4027" /db_xref=#HRD:02754" /db_xref="HIR:11900" 0RIOIN 1 w/bltpeeks avtalwykvn vdevggealg rilvvypwtq rffesfgdis tpdavmgnpk				
/db_xeef="HPBD:00776" /db_xeef="HB1: <u>11900</u> " ORIGIN / mvhitpeeks avtalwykvn vdevggealg clivvypwtq rffesfgdis tpdavmgnpk 1 mvhitpeeks avtalwykvn vdevggealg clivvypwtq rffesfgdis tpdavmgnpk				
ORIGIN				
1 mvhltpeeks avtalwgkvn vdevggealg rllvvyp#tq rffesfgdls tpdavmgnpk		/	db xref="HIN:141900"	
	RIGIN			
61 vkahgkkvig afsdglahid nikgtfatis elhedkihvd penfrilgnv ivevlahhfg				
121 keftppygaa ygkyyagyan alahkyh				Fig. 2
	/			Page

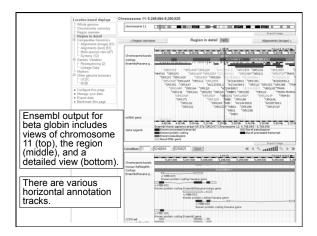


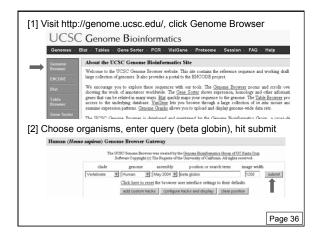
Vou car	n change the display (as shown)	
Tou cai	i change the display (as shown)	
	CBI Protein	
Search Prote		
Display Gen		
Range: J Gon	and Features: SNP CDD FHPRD + Refresh	
Gen	Pept(Full)	1
FAS	TA beta globin [Homo[gi:4504349]	
Tinv	Seq XML	
Commer INSC	DSeq XML guence	
Grap GILi		
Brief	in (New particul)	
ACCESST Sum	mary	
VERSION	NF_000509.1 GI:4504349	
DESOURCE	REFSEQ: accession NM 000518.4	
SOURCE	Nomo sapiens (human)	
ORGANISM	Homo sapiens	
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Maplorrhini;	
	Catarrhini; Hominidae; Homo.	
REFERENCE	1 (residues 1 to 147)	
AUTHORS	Bernaudin, F., Verlhac, S., Chevret, S., Torres, H., Coic, L.,	
TITLE	Arnaud, C., Kamdem, A., Hau, I., Neonato, M.G. and Delacourt, C. G6PD deficiency, absence of alpha-thalassemia and hemolytic rate at	
	baseline are significant independent risk factors for abnormally	
JOURNAL.	high cerebral velocities in patients with sickle cell anemia Blood (2008) In press	
JOORNAL	Blood (2008) in press	
		Page 3

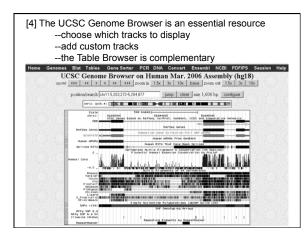


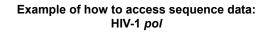
	Outline for today
Intro	duction
Acce	essing information
	Entrez Gene
	Accession numbers and RefSeq
	Protein Databases: UniProt, ExPASy
	Three genome browsers: NCBI, UCSC, Ensembl
Fou	perspectives on individual proteins
	Perspective 1: Protein families (domains and motifs
	Perspective 2: Physical properties (3D structure)
	Perspective 3: Localization
	Perspective 4: Function



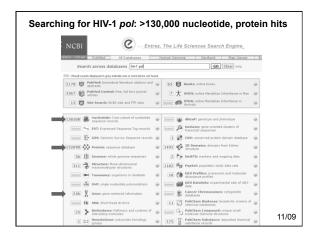



	Outline for today
Introd	luction
Acce	ssing information
	Entrez Gene
	Accession numbers and RefSeq
	Protein Databases: UniProt, ExPASy
	Three genome browsers: NCBI, UCSC, Ensembl
Four	perspectives on individual proteins
	Perspective 1: Protein families (domains and motifs)
	Perspective 2: Physical properties (3D structure)
	Perspective 3: Localization
	Perspective 4: Function

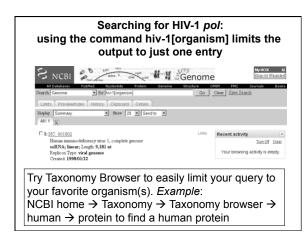


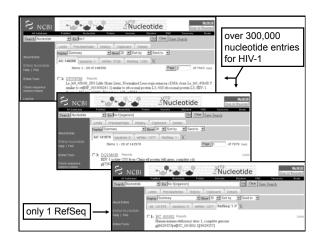

[3] Choose the RefSeq beta globin gene

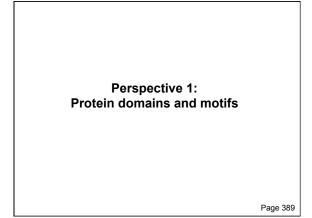
UCSC Genes <u>HB__uccOpyms_1] et chr1150/4189-5212356</u> - Mesoglobin Lepore-Baitimore (Fregme <u>HB__uccOpyms_1] et chr1150/272-5204877</u> - Metaglobin <u>HB__uccOpyms_1] et chr101/4720-1498047</u> - Malt <u>HB__uccOpyms_1] et chr101/4720475421196</u> - Mant


RefSeq Genes

<u>HBB at chr11:5203272-5204877</u> - (NM_000518) beta globin HBBP1 at chr11:5219761-5221398 - (NR_001589)




There are many possible approaches. Begin at the main page of NCBI, and type an Entrez query: hiv-1 pol



Example of how t	o access	sequence data: histone
query for "histone	"	# results
protein records RefSeq entries		85,000 32,000
RefSeq (limit to h NOT deacetylase	,	1129 863
histone 2, H4) an		able candidate (e.g. nk to Entrez Gene.
There, you can confirm you have the right protein.	Al Databases Search Protein	Publied Protein Ground Structure Structure Structure For [vidde066[Organism.exp] histone NOT deacetylastO dex HistoryDideacetylast
11-09	Display Summary All: 3800 Bacteria	Show 20 Sort By See

S NCBI Entrez Gene		My NCEE Bligh Int (Regi
All Public Police Polic	**	Becks Christ
Linits PreviewIndex History Clipboard Details Deskw Full Perport Base 5		
All: 1 Current Only: 1 Genes Genomes: 1 SNP GeneView. 1 🛠		
1: HIST2H4A Histone 2, H4a [Homo zapienz] GeneID: 8370 Primary source: HORC-4734 updated 11	kug-2006	Entrez Gene Ho Thire Ci Contenta
Summary	2 \$	Summary Ownomic regions, banace Ownomic context
Official Special IEETTIGLA and Name Interes 7. His provided by <u>IEO2O One Alignment Research</u> (2012) 2012, and 2012 2012 2012 2012 2012 2012 2012 201	The omic cord	Billiopselp Billiopselp Billiopselp descelption descelption Reference Reference Reference Reference Construction Const
Genomic regions, transcripts, and products (unue mult) Control (Unue mult) (unue mult) (unue mult) (unue multi) (unue mult	2 #	Taxinsetty UniSTS AnatVilae CCDS Ensembl Evidence Viasear IRDRCC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRCC IRDRCC IRDRCC IRDRCC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRC IRDRCC IRDRC IRDRCC I

Outline for today				
Introduction				
Accessing information Entrez Gene Accession numbers and RefSeq Protein Databases: UniProt, ExPASy Three genome browsers: NCBI, UCSC, Ensembl				
Four perspectives on individual proteins Perspective 1: Protein families (domains and motifs) Perspective 2: Physical properties (3D structure) Perspective 3: Localization Perspective 4: Function]			

Signature:

• a protein category such as a domain or motif

Definitions

Page 390

Definitions

Signature:

• a protein category such as a domain or motif

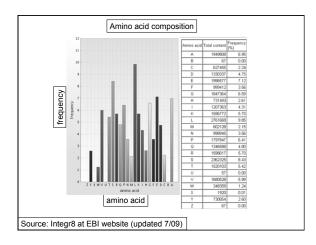
Domain:

- a region of a protein that can adopt a 3D structure a fold

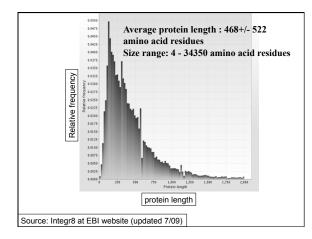
- a family is a group of proteins that share a domain
 examples: zinc finger domain
 immunoglobulin domain

- Motif (or fingerprint): a short, conserved region of a protein typically 10 to 20 contiguous amino acid residues

15 most common domains (human)					
Zn finger, C2H2 type	1093 proteins				
Immunoglobulin	1032				
EGF-like	471				
Zn-finger, RING	458				
Homeobox	417				
Pleckstrin-like	405				
RNA-binding region RNP-1	400				
SH3	394				
Calcium-binding EF-hand	392				
Fibronectin, type III	300				
PDZ/DHR/GLGF	280				
Small GTP-binding protein	261				
BTB/POZ	236				
bHLH	226				
Cadherin	226				
Source: Integr8 at EBI website		Page 391			

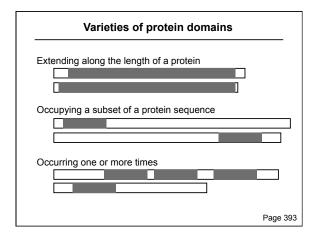

15 most common domains (various species)

The European Bioinformatics Institute (EBI) offers many key proteomics resources at the Integr8 site:

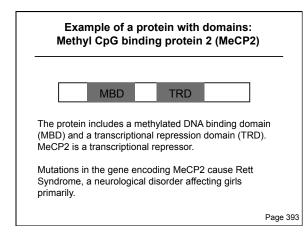

http://www.ebi.ac.uk/proteome/

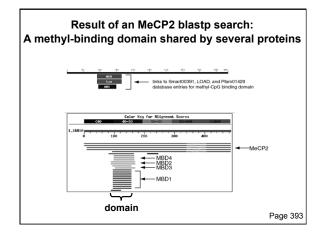
- 1. Go to the Integr8 site: http://www.ebi.ac.uk/proteome/
- 2. Browse species; choose Homo sapiens.
- 3. Click "Proteome analysis"
- 4. Obtain a variety of statistics, such as common repeats, domains, average protein length

EMBL-EBI	All Databases Enter Text Here Go Reset 🕐 Give as Advanced Search Restloce
Databases Tools	EBI Groups Training Industry About Us Help Sile Index 📓 🍏
= Horno	EEE > Databases > Integr0
= local help ④	Integr8 : Access to complete genomes and proteomes
= Integr8 News = Focal Point archive = Latest Species	Search for species 50 Search for gene protein 6 (af uncore 1 50) e g Trait, 1900 How do trait OkacSearch?
BrowseSpecies Inquisitor status	The Integed web potal provides easy access to integrated information about deciphered genomes and their corresponding potenties. Available data includes IDMA sequences from databases including the DRM, Nuclusion Sequence Databases (consen Review, or Remeth), protein sequences from databases including the DRM, Nuclusion Response Database and PD; statistical genome and proteines analysis (performed using InterPho, CuSTr, and GOA); and infimitian balant enfology, nallegay, and systems:
BioMart Profeomes and Oenomes FASTA	hteg6 data can also be accessed via the <u>integrit ITP</u> site. New to integr07 The <u>user gates</u> will show you how to make the most of the data provided by integr0. Alternatively, you may choose start torewaying the data. We value your feedback? Please <u>server or your comments.</u>

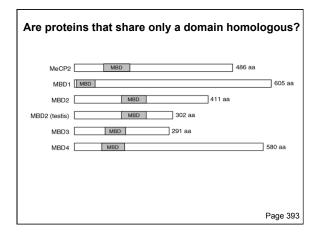

Definition of a domain

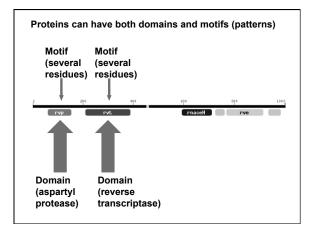
According to InterPro at EBI (http://www.ebi.ac.uk/interpro/):

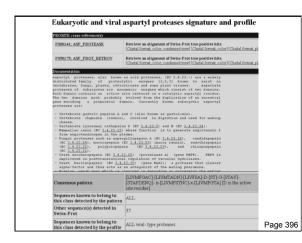

A domain is an independent structural unit, found alone or in conjunction with other domains or repeats. Domains are evolutionarily related.


According to SMART (http://smart.embl-heidelberg.de):

A domain is a conserved structural entity with distinctive secondary structure content and a hydrophobic core. Homologous domains with common functions usually show sequence similarities.







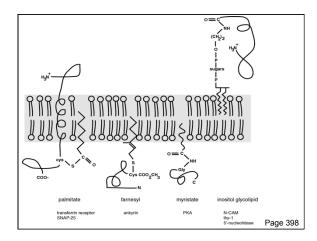
Definition of a motif

A motif (or fingerprint) is a short, conserved region of a protein. Its size is often 10 to 20 amino acids.

Simple motifs include transmembrane domains and phosphorylation sites. These do not imply homology when found in a group of proteins.

PROSITE (www.expasy.org/prosite) is a dictionary of motifs (there are currently 1600 entries). In PROSITE, a <u>pattern</u> is a qualitative motif description (a protein either matches a pattern, or not). In contrast, a <u>profile</u> is a quantitative motif description. We will encounter profiles in Pfam, ProDom, SMART, and other databases.

Page 394


Summary of Perspective 1: Protein domains and motifs

A signature is a protein category such as a domain or motif.

You can learn about domains at Integr8, and at databases such as InterPro and Pfam.

A motif (or fingerprint) is a short, conserved sequence. You can study motifs at Prosite at ExPASy.

> Perspective 2: Physical properties of proteins

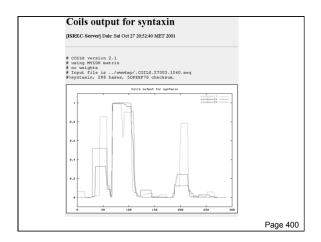
Physical properties of proteins

Many websites are available for the analysis of individual proteins. ExPASy and ISREC are two excellent resources.

The accuracy of these programs is variable. Predictions based on primary amino acid sequence (such as molecular weight prediction) are likely to be more trustworthy. For many other properties (such as posttranslational modification of proteins by specific sugars), experimental evidence may be required rather than prediction algorithms.

Page 399

Access a variety of protein analysis programs from the top right of the ExPASy home page

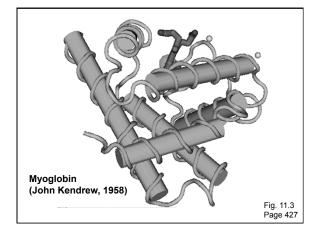

Compute pI/Mw

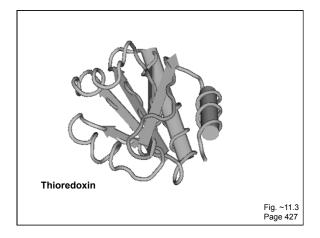
RETB HUMAN (P02753)

- DE Plasma retinol-binding protein precursor (PRBP) (RBP). OS Homo sapiens (Human).
- The computation has been carried out on the complete sequence.

Molecular weight: 22867.85

Theoretical pI: 5.48




Protein secondary structure

Protein secondary structure is determined by the amino acid side chains.

Myoglobin is an example of a protein having many α -helices. These are formed by amino acid stretches 4-40 residues in length.

Thioredoxin from *E. coli* is an example of a protein with many β sheets, formed from β strands composed of 5-10 residues. They are arranged in parallel or antiparallel orientations.

Secondary structure prediction

Chou and Fasman (1974) developed an algorithm based on the frequencies of amino acids found in α helices, β -sheets, and turns.

Proline: occurs at turns, but not in $\boldsymbol{\alpha}$ helices.

GOR (Garnier, Osguthorpe, Robson): related algorithm

Modern algorithms: use multiple sequence alignments and achieve higher success rate (about 70-75%)

Page 427

Secondary structure prediction

Web servers:

GOR4 Jpred NNPREDICT PHD Predator PredictProtein PSIPRED SAM-T99sec

> Table 11-3 Page 429

	10	20	30	40	50	60	70
	1	1	1	1	1	1	1
3DSEQ pdb1pbo& pdb1pbo&							
DPH	cchhhhhhchcete						tcceeek
DSC	0000000000 000000 00000000000000000000						eeeeee
GOR4	cccccchhhhhhcc						
HINC	cchhhhhhhhhh						
PHD	000000000000000000000000000000000000000						eeeeee
Predator	ccchhhhhhhcccc						eeeeee
SIMPA96	hhhhhhhhhh						
SOPM	hhhhhhhhhhhh						
Sec.Cons.	cc?hhhhhhhhhcc	ccceeeeee	*******	cccch?e?he	Focococcee	beeeeccccc	~ ? eeeee
	80	90	100	110	120	130	140
	1	1	1	1	1	1	1
3DSEQ pdb1pbo& pdb1pbo&	ATKQDDGTYVADYE	GONVFRIVSI	LSRTHLVAHN	INVDKHGQKT	ELTGLFVKLN	VEDEDLEKFW	KLTEDKO
DPH	hhttttoccehoto	toceeeeee	eeceheehh	etetococcol	heceehhh	hhhhhhhhh	hhhtco
DSC	eeccocceeeeee	coceeeee	coceeeeee	eeecccccce	eeeeeecco	ccccchhhhh	heeccoo
GOR4	eeccccceeeeccc	ccceeeeee	ccchhhhhcc	cccccccch	hhheeeee	cochhhhhhh	hhhhcco
HNINC	eeccccceeeecc	ccceeeeee	ccccheecc	cccccccce	eeceeeeee	cochhhhhhh	hhhhcco
PHD	eeecccceeeeec	ceeeeeee	eccceeeeee	eeecccccee	èeeeeeeccci	chhhhhhh	hhhhhc
Predator	eeeccccceeeecc						
SIMPA96	cccccceeeeccc						
SOPM	ecctttceeeeeet						
Sec.Cons.	eeccccceeeeecc	coceeeeee	?ccceeeecc	?0?00000?	hh?eeeeeo	sochhhhhhh	hhhhcco
	150						
3DSEQIpdb1pboAipdb1pboA		unu					
DPM	ctccceeebbbtc	<i>m</i> n			-		
DSC		Cata	httm	/mhil.		on 1 fu	./
GOR4	coceeeeeeecco	G0 t0	nttp:/	/poii.u	iniv-ly	on1.ir	7,
HNNC			. ·	<u>.</u>			·
PHD	ccccchhhecccc	click '	"Secoi	idary	struct	are pr	edic
Predator							
SINDAGE	cchhhhhhhhhh	to acc	ess th	is nred	liction	tool	
SOPN	cchhhhhhhhhhtt	to acc	cos un	is preu	neuon	1001	

Tertiary protein structure: protein folding

Main approaches:

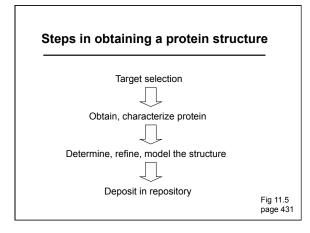
[1] Experimental determination (X-ray crystallography, NMR)

[2] Prediction

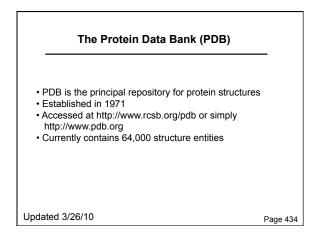
- Comparative modeling (based on homology)
- ► Threading
- ► Ab initio (de novo) prediction

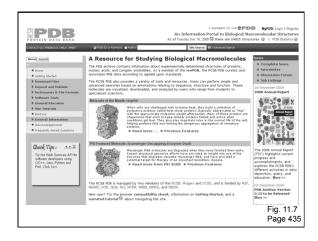
Page 430

Experimental approaches to protein structure

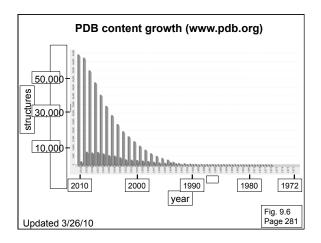

- [1] X-ray crystallography -- Used to determine 80% of structures -- Requires high protein concentration

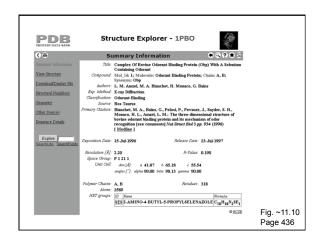
 - -- Requires crystals


 - -- Able to trace amino acid side chains -- Earliest structure solved was myoglobin

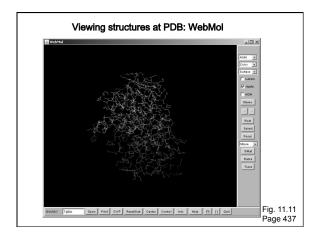

[2] NMR

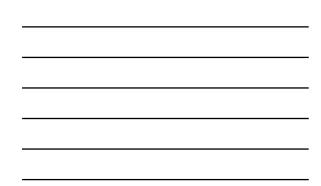
- -- Magnetic field applied to proteins in solution -- Largest structures: 350 amino acids (40 kD)
- -- Does not require crystallization

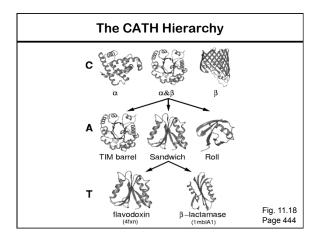




50,621 2,225 1,946 <u>33</u> 54,825

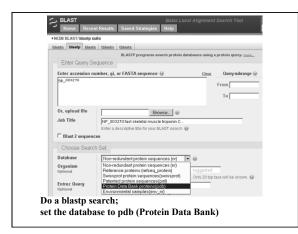



			THE CPDB MyPOB: Login R logical Macromolecular Struct 54825 Structures @ PCB Statist
CONTACT US FEEDBACK HELP FRINT	PDB ID or keyword	Autor S	ite Search 👩 Advanced Search
Nome Search Structure Results	Help) Structure Summa	y Sequence Details Biology & Chemistry Nate	erials & Hethods] Geometry External Link
	2h35 🔁 🖬 @	Learn more: [M] DOI 10.2210/adb2h35/adb	Images and Visualization
- # 2HD5	Red - Derived Information	600 10.22 Toplation year	Asymmetric Unit
Download Files	Red - Derived Information		
- # FASTA Sequence	Title	Solution structure of Human normal adult hemoglobin	A Dide The
Download Original Files			
Display Files	Authors	Fan, J.S., Yang, D.	A STATE OF THE STATE
Display Nolecule Structural Reports		Xu, Y., Zheng, Y., Fan, J.S., Yang, D.	A Contraction
External Links		(2006) A new strategy for structure determination of large proteins in solution without deuteration Nat/Methods ≥ 921-927	
Structure Analysis	Primary Citation	Abstract] Publiced	000 SHOW 33
▶ Help	_		CALLY STATES
	History	Deposition 2006-05-22 Release 2006-11-14	a la
Quick Tips:	Experimental Method	Type NMR, 20 STRUCTURES Data NA	Display Options @
To view the 3D structure click on one of the viewers under the image.	NMR Ensemble	Conformers Calculated 20 Conformers Submitted 20 Selection Oriteria structures with acceptable covalent geometry, structures with the least restraint violations, structures with the lowest energy	
	NMR Refine	Method NMR, 20 STRUCTURES	
	Molecular Description Asymmetric Unit	Polymer: 1 Molecule Hemoglobin alpha subunt Chains: A.C Polymer: 2 Molecule Hemoglobin beta subunt Chains: B.D Bitschar Weisht. 64555.86	
	Classification	Oxygen Storage/transport	

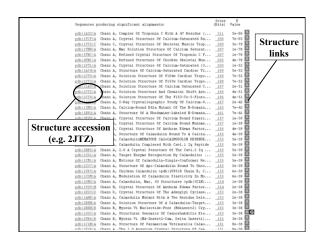


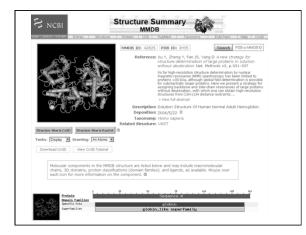
Access to PDB through NCBI

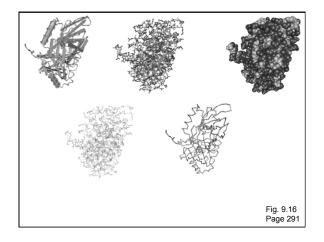
You can access PDB data at the NCBI several ways.

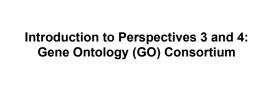

· Go to the Structure site, from the NCBI homepage

Use Entrez


• Perform a BLAST search, restricting the output to the PDB database






Access to PDB structures through NCBI

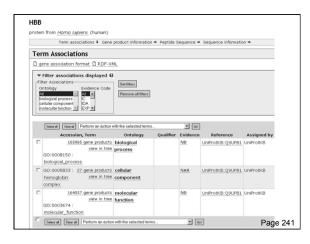
Molecular Modeling DataBase (MMDB)

Cn3D ("see in 3D" or three dimensions): structure visualization software

Vector Alignment Search Tool (VAST): view multiple structures

Page 237

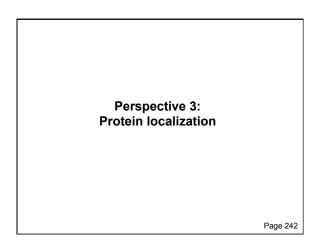
The Gene Ontology Consortium

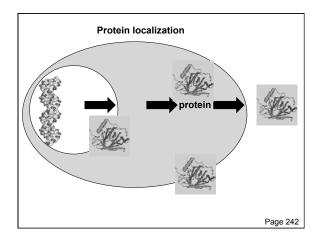

An ontology is a description of concepts. The GO Consortium compiles a dynamic, controlled vocabulary of terms related to gene products.

There are three organizing principles: Molecular function Biological process Cellular compartment

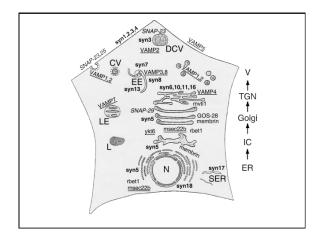
You can visit GO at http://www.geneontology.org. There is no centralized GO database. Instead, curators of organism-specific databases assign GO terms to gene products for each organism.

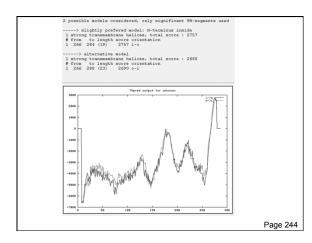
		Provided by
Function		idence
heme binding	IEA	
hemoglobin binding	IDA	PubMed
iron ion binding	IEA	
metal ion binding	IEA	
molecular function	ND	
oxygen binding	IDA	PubMed
oxygen binding	IEA	
oxygen transporter activity oxygen transporter activity	IEA NAS	PubMed
Process	Evi	idence
biological process	ND	
nitric oxide transport	NAS	PubMed
oxygen transport	IEA	
	NAS	PubMed
oxygen_transport		PubMed PubMed
oxygen transport oxygen transport oxygen transport positive regulation of nitric oxide biosynthetic process	NAS	
oxygen transport oxygen transport oxygen transport	NAS TAS	PubMed
oxygen transport oxygen transport oxygen transport positive regulation of nitric oxide biosynthetic process	NAS TAS NAS	PubMed
owgen transport owgen transport owgen transport positive regulation of nitric oxide biosynthetic process regulation of blood pressure	NAS TAS NAS IEA	PubMed
orygen transport oxygen transport oxygen transport positive regulation of mitric oxide biosynthetic process regulation of blood yesself size	NAS TAS NAS IEA IEA IEA	PubMed
ourgen transport ourgen transport opgen transport opgenter angulation of nitric, ouide kionynthetic process regulation of folgod pressure regulation of blood vessel size transport	NAS TAS NAS IEA IEA IEA	PubMed PubMed
ourgen transport ourgen transport ourgen transport sourgen transport sourgen transport regulation of blood exessue regulation of blood vessel size transport transport	NAS TAS NAS IEA IEA IEA	PubMed PubMed





The Gene Ontology Consortium: Evidence Codes


- IC Inferred by curator
- IDA Inferred from direct assay
- IEA Inferred from electronic annotation IEP Inferred from expression pattern
- IEP Inferred from expression pattern IGI Inferred from genetic interaction
- IMP Inferred from mutant phenotype
- IPI Inferred from physical interaction
- ISS Inferred from sequence or structural similarity
- NAS Non-traceable author statement
- ND No biological data
- TAS Traceable author statement


Protein localization Proteins may be localized to intracellular compartments, cytosol, the plasma membrane, or they may be secreted. Many proteins shuttle between multiple compartments. A variety of algorithms predict localization, but this is essentially a cell biological question.

Do	sults of Subprograms
Ne	sults of Subprograms
PSG:	a new signal peptide prediction method
	N-region: length 2; pos.chg 1; neg.chg 0
	H-region: length 14; peak value 10.03
	PSG score: 5.63
GvH:	von Heijne's method for signal seq. recognition
	GvH score (threshold: -2.1): 3.93
	possible cleavage site: between 16 and 17
>>> \$	eems to have a cleavable signal peptide (1 to 16)
	Page 242

Г

