

Johns Hopkins Bloomberg School of Public Health 260.655 Thursday, April 1, 2010 Jonathan Pevsner

Outline for today

1. Homology and pairwise alignment

2. BLAST

3. Multiple sequence alignment

4. Phylogeny and evolution

Learning objectives: homology & alignment

1. You should know the definitions of homologs, orthologs, and paralogs

2. You should know how to determine whether two genes (or proteins) are homologous

3. You should know what a scoring matrix is

4. You should know how alignments are performed

5. You should know how to align two sequences using the $\ensuremath{\mathsf{BLAST}}$ tool at NCBI

- It is used to decide if two proteins (or genes) are related structurally or functionally
- It is used to identify domains or motifs that are shared between proteins
- It is the basis of BLAST searching (next topic)
- It is used in the analysis of genomes

Pairwise alignment: protein sequences can be more informative than DNA

- protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties
- codons are degenerate: changes in the third position often do not alter the amino acid that is specified
- protein sequences offer a longer "look-back" time
- DNA sequences can be translated into protein, and then used in pairwise alignments

CBI/BLAST/Masters	vite x theats theats equence BLASTP programs search protein s	fasta foi BLAST.	rmat) and
Enter accession n >gi145042491ref MINETPERSAUTAL AF90 CLAHLDNLNOT ALAIDYTE *	umber, gl. or FASTA sequence Construction of the sequence INT_000509.11 beta globin (Rose sequent) INT_000509.11 beta	Optiona paramet	Illy selec ters" and
Or, upload file	Browse, Q	mauna	puon.
Job Title 🔽 Alian two or m	pr (4504349)ref(NP_000509.1) beta globin (Homo Enter a descriptive title for your BLAST search @	BLAST	Search protein seq
		▼ Algorithm parame	ters
	Sequence		
Enter Subject	Sequence	General Param	ieters
Enter Subject Enter accession n ng_005359	Sequence umber, gl, er FASTA sequence @ Clear	General Param Max target sequences	100 I Select the maximum r
Enter Subject	Sequence umber, gl, er FASTA sequence 🕢 Clear.	General Param Max target sequences Short queries	Ito Select the maximum r P Automatically adj
Enter Subject Enter accession n np_005359 Or, upload file	Sequence Clear.	General Param Max target sequences Short queries Expect threshold	Ito Select the maximum r F Automatically adj
Enter Subject Enter accession n ne_005359 Or, upload file Program Sele	equence Course C	General Param Max target sequences Short queries Expect threshold Word size	Ito Carlos Automatically adjusted in the maximum relation of the second
Enter Subject Enter accession n rep_005359 Or, upload file Program Sele Algorithm	Bows Parallel Para	General Param Max target sequences Short queries Expect threshold Word size	Iters
Enter Subject Enter accession in re_ootssp Or, upload file Program Sele Algorithm	Construction and and a sequence (a) One (a) On	General Param Max target sequences Short queries Expect threshold Word size Scoring Param Matrix	eters Select the maximum of P Automatically adj 10 3 2 0 eters
Enter Subject Enter accession in re_005355 Or, upload file Program Sele Algorithm BLAST	Constantion of a sequence of the sequence of t	General Param Max target sequences Short queries Expect threshold Word size Scoting Param Matrix Gap Costs	Ito Construction of the maximum of t

quences (as ers or in the d click "Algorithm note the

Pairwise alignment result of human beta globin and myoglobin							
Myoglobin RefSeq	Information about this alignment: score, expect value, identities, positives, gaps						
ref NP 976311.1 UG myoglobin [Homo se ref NP 976312.1 G myoglobin [Homo sepi ▷11 more sequence titles Length=154	ens]						
GENE ID: 4151 ME myoglobin [Homo sayle: Score = 47.4 bits (144), Expect = 8e-11 Identities = 37/145 (25%), Positives = 5	ns] (Over 10 PubMed links) , Method: Compositional matrix adjust. 7/145 (39%), Gaps = 2/145 (1%)						
Query 4 LTPEEKSAVTALWGKVNVDEVGGEALG L+ E V +WGKV D G E L] Sbjct 3 LSDGEWQLVLNVWGKVEADIPGHGQEVLI	RLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 61 RL +P T F+ F L + D + + + RLFKGHPETLEKFDKFKHLKSEDEMKASEDL 62						
Query 62 KAHGKKVLGAFSDGLAHLDNLKGTFATLSJ K HG VL A L + + L+ Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKFLA	ELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 121 + H K + + + ++ VL SSHATKHKIPVKYLEFISECIIQVLQSKHPG 122						
Query 122 EFTPPVQAAYQKVVAGVANALAHKY 14 +F 0 A K + +A Y Sbjct 123 DFGADAQGAMNKALELFFKDHASNY 14	5 7						
Query = HBB Subject = MB Hiddle row + sign for s	displays identities; imilar matches Page 53						

Definitions

Pairwise alignment

The process of lining up two sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Homology

Similarity attributed to descent from a common ancestor.

Identity

The extent to which two (nucleotide or amino acid) sequences are invariant.

Definitions: two types of homology

Orthologs

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs

Homologous sequences within a single species that arose by gene duplication.

Definitions

Similarity

The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

Identity

The extent to which two sequences are invariant.

Conservation

Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physicochemical properties of the original residue.

Two kinds of sequence alignment: global and local

We will first consider the global alignment algorithm of Needleman and Wunsch (1970).

We will then discuss the local alignment algorithm of Smith and Waterman (1981).

Finally, we will consider BLAST, a heuristic version of Smith-Waterman. BLAST is faster but less rigorous.

Page 63

Global alignment with the algorithm of Needleman and Wunsch (1970)

- Two sequences can be compared in a matrix along x- and y-axes.
- If they are identical, a path along a diagonal can be drawn
- Find the optimal subpaths, and add them up to achieve the best score. This involves
 - --adding gaps when needed
 - --allowing for conservative substitutions
 - --choosing a scoring system (simple or complicated)
- N-W is guaranteed to find optimal alignment(s)

Three steps to global alignment with the Needleman-Wunsch algorithm

- [1] set up a matrix
- [2] score the matrix
- [3] identify the optimal alignment(s)

Page 63

Rapid, heuristic versions of Smith-Waterman: BLAST

Smith-Waterman is very rigorous and it is guaranteed to find an optimal alignment.

But Smith-Waterman is slow. It requires computer space and time proportional to the product of the two sequences being aligned (or the product of a query against an entire database).

BLAST provides a rapid alternative to S-W, although it's not as accurate.

Outline for today

1. Homology and pairwise alignment

2. BLAST

- 3. Multiple sequence alignment
- 4. Phylogeny and evolution

Learning objectives: BLAST

1. You should know what the five basic BLAST programs are

2. You should be able to perform a BLAST search

3. You should be able to interpret the results of a BLAST search

BLAST

BLAST (Basic Local Alignment Search Tool) allows rapid sequence comparison of a query sequence against a database.

The BLAST algorithm is <u>fast</u>, <u>accurate</u>, and web-<u>accessible</u>.

page 87

Why use BLAST?

BLAST searching is fundamental to understanding the relatedness of any favorite query sequence to other known proteins or DNA sequences.

- Applications include identifying orthologs and paralogs discovering new genes or proteins
- discovering variants of genes or proteins
- investigating expressed sequence tags (ESTs)
 exploring protein structure and function

page 88

Four components to a BLAST search

- (1) Choose the sequence (query)
- (2) Select the BLAST program

(3) Choose the database to search

(4) Choose optional parameters

Then click "BLAST"

page 88

Step 1: Choose your sequence

Sequence can be input in FASTA format or as accession number

page 89

Step 3: choose the database

nr = non-redundant (most general database) dbest = database of expressed sequence tags dbsts = database of sequence tag sites gss = genomic survey sequences htgs = high throughput genomic sequence

page 92-93

How a BLAST search works

"The central idea of the BLAST algorithm is to confine attention to segment pairs that contain a word pair of length w with a score of at least T."

Altschul et al. (1990)

(page 101, 102)

How the original BLAST algorithm works: three phases

Phase 1: compile a list of word pairs (w=3) above threshold T

Example: for a human RBP query ...FSGTWYA... (query word is in yellow)

A list of words (w=3) is:

FSG SGT GTW TWY WYA YSG TGT ATW SWY WFA FTG SVT GSW TWF WYS

> Fig. 4.13 page 101

Phase 1: compile a	a list of words (w=3)
	GTW 6,5,11 22
neighborhood	GSW 6,1,11 18
word hits	ATW 0,5,11 16
> threshold	NTW 0,5,11 16
	GTY 6,5,2 13
(T=11)	GNW 10
neighborhood word hits	GAW 9
< below thresh	old Fig. 4.13 page 10

How a BLAST search works: 3 phases

Phase 2:

Scan the database for entries that match the compiled list.

This is fast and relatively easy.

Fig. 4.13 page 101

BLAST-related tools for genomic DNA

Recently developed tools include:

- MegaBLAST at NCBI.
- BLAT (BLAST-like alignment tool). BLAT parses an entire genomic DNA database into words (11mers), then searches them against a query. Thus it is a mirror image of the BLAST strategy. See http://genome.ucsc.edu
- SSAHA at Ensembl uses a similar strategy as BLAT. See http://www.ensembl.org

	То	access BLAT, visit http://genome.ucsc.edu	
	UCSC	C Genome Bioinformatics	
	Genomes - C	Gene Sorter - Blat - PCR - Tables - FAQ - Help	
- 1	Genome	About the UCSC Genome Bioinformatics Site	
	Browser Gene Sorter	This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also shows the CFTR (cystic fibrosis) region in 13 species and provides a portal to the ENCODE project.	
	Blat In Silico PCR	norman you to explore dates sequences with out tools. The Genome Browner norms and service demonstration of the Server how requires inclusioning and other information on groups of geness that can be related in many ways. Elat quickly maps your sequence to the genome. The Table Browner provides convenient access to the underlying database.	
	Browser	Naux Naux Naux	
- 1		10 September 2004 - Tetraodon Genome Assembly in Genome Browser	
	Downloads Release Log Custem	The Omoscope v7 Tetraodos suprovosids genome astembly is now available in the UCSC Omome Browser and Blas rever. This astembly, UCSC version tetRig1 dated Feb. 2004, is the result of a collaboration between <u>Genoscope</u> and the <u>Broad lumine</u> of MIT and Harvard.	
	Tracks	The v7 assembly was constructed using the while genome shotgan (WGS) approach, rending in a sequence coverage of about 7.9X. The assembly contains 45,609 contigs and 25,773 scalibles generated by the Arachne program and covers more than 90% of the genome.	
"BL and mo per the 80%	AT or d great ore divertion offect so m dovertion % and	n DNA is designed to quickly find sequences of ter similarity of length 40 bases or more. It may vergent or shorter sequence alignments. It will sequence matches of 33 bases, and sometimes wn to 20 bases. BLAT on proteins finds sequence d greater similarity of length 20 amino acids or m	95% miss find find es of iore.
ln bla	practi t on la	ce DNA BLAT works well on primates, and pro and vertebrates."BLAT website	otein

How to interpret a BLAST search: expect value

The expect value E is the number of alignments with scores greater than or equal to score S that are expected to occur by chance in a database search.

An *E* value is related to a probability value *p*.

The key equation describing an *E* value is:

E = Kmn e^{-λS}

page 105

How to interpret BLAST: *E* values and *p* values

Very small E values are very similar to p values. E values of about 1 to 10 are far easier to interpret than corresponding p values.

E	p	
10	0.99995460	
5	0.99326205	
2	0.86466472	
1	0.63212056	
0.1	0.09516258 (about 0.1)	
0.05	0.04877058 (about 0.05)	
0.001	0.00099950 (about 0.001)	
0.0001	0.0001000	Table 4.4
		page 107

- a collection of three or more protein (or nucleic acid) sequences that are partially or completely aligned
- homologous residues are aligned in columns across the length of the sequences
- residues are homologous in an evolutionary sense
- residues are homologous in a structural sense

Example: globins

Let's look at a multiple sequence alignment (MSA) of five globins proteins. We'll use five prominent MSA programs: ClustalW, Praline, MUSCLE (used at HomoloGene), ProbCons, and TCoffee. Each program offers unique strengths.

We'll focus on a histidine (H) residue that has a critical role in binding oxygen in globins, and should be aligned. But often it's not aligned, and all five programs give different answers.

Our conclusion will be that there is no single best approach to MSA. Dozens of new programs have been introduced in recent years.

ClustalW

CLUSTAL W (1.83) multiple sequence alignment

Note how the region of a conserved histidine (▼) varies depending on which of five prominent algorithms is used

	Praline					
(a) Praline multipl	e sequence alignment					
	▼					
beta globin	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFES.I					
myoglobin	MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK.					
neurogiobin	MERPEPELIKQSWRAVSRSPLEHGTVLFARLFALEPDLEPEPQING					
soybean	MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFS					
rice	MALVEDNNAVAVSFSEEUEALVLKSWAILKRDSANIALKFFLKIFEVAPSASUMFS					
Consistency	000000001426543625734573465364343624453666433*35344*500					
hota globin						
muoglobin	HINGEDEMKAGEDI VEUGATULTAI GOT KKKGUESETKDIAOG USTKUK					
neuroglobin	OPSSDEDCT.SSDEFT.DUTDRUMI.VIDAAUTNUFDI.SSI.FFVIASI.CDEUDAUG					
soubean	A NGUDD TNDELTCHAFELFALUEDSAGOL KASCTUVADAA LCSVHACKAV					
rice	P NSDUDLEKNDELKOUAMSVEUMOCEARAOL REACKUTURDTTLERLCATHLEYCUC					
Consistency	3166354224776653*43686354244544513356343335420033354400009					
comprocess?						
beta globin	ENFRLLGNVLVCVLAHHF.GKEFTPPVOAAYOKVVAGVANALAHKYH					
myoglobin	KYLEFISECIIQVLQSKH.PGDFGADAQGAMNKALELFRKDMASNYKELGFQG					
neuroglobin	SSFSTVGESLLYMLEKCL.GPAFTPATRAAWSQLYGAVVQAMSRGWDGE.					
sovbean	POFVVVKEALLKTIKAAV.GDKWSDELSRAWEVAYDELAAAIKKA					
rice	AHFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKOEMKPAE					
Consistency	43744844498258542305336554454*55465426446754322001000					

(c) PROBCONS	
beta globin myoglobin neuroglobin soybean rice	MVILTPEERSAVTALWGKVRVDEVOGEALGKLIVVYPWTQRFFES-FG MCLEDCEBUCIVLAVWGKVRAD1GHOGVVI.HLKKIPETLERFFU-FW REPERLINGENVARBRIJENCYVI.HARLIALEDLIPUTVIK MVRFEROGALVISSEFAFTABITOVISVYTTSILEKARANDLEPT-L MUTERINAVASI ILKORSANLARFILFTI.FILTSVARBAUGVET-L
beta globin myoglobin neuroglobin soybean rice	DLSTEDAVIGNIKIVKAGKKVLGARGDZAHLDNLKOFFATLSELACKLKVD HLKSEDENKASEDLKKIGATVLTALGG OFSSEDCLSSFELDHI RIVNLVLGATINVELSSLELINSJGNIRAV-GYKL NSVVPLEKNFLKITHASIVFVTCEAAGLKRAGVVVRUTLIKUGATHLK- NSVVPLEKNFLKITHASIVFVTCEAAGLKRAGVVVRUTLIKUGATHLK- S
beta globin myoglobin neuroglobin soybean rice	ENFRLLGNVLVCVLAHHF-GREPTPPVQAYQGVVAGVANALAHRYH KYLEFISCIIQVLGSKH-PGDFGADGGAMMKALEFFRUMASNYKELGFGG SSPSTVGESLIYMLEKCL-GPAPTPARFANNSGLVGAVVQASVGAMSGCN-DG PGVVVKSLLMITIRAV-GUNKSGLSAANEVAIDELAANIRKA AFFEVYKFALLDITREEVPALMMSPAMKSANEFAIDHLVAAIGGMKPAE

Page	195
i ugo	100

	TCoffee				
(d) CLUSTAL FORM	RT for T-COFFEE Version_5.13				
beta globin myoglobin neuroglobin soybean rice					
beta globin myoglobin neuroglobin soybean rice	DLSTPDAVMENDEVEKNEKVUGAPSDCLAHLINNKGTFATLSELMCDKLHVUP HLKBEDEMKASEDLEHHANVUCALGLLKKKGHEAEIKPIAOSMATKKITU OFSPSPEDLSEPETLEHIEKVULTUANTIVEDKOLLKAGGVVADNALGSVARKKAVTD NGVDPENDELLGHERLPALVEDSKOLLKAGGVVADALGSVARGKAVTD NSDPLEKNPKLETHANSVFVMTCERAACLEKAGKVTVDTLKRLGATHLKYGVGA				
beta globin myoglobin neuroglobin soybean rice	ENFRILLAUVLYCULANNF-GKEFF PYCAXYORVYAAVANLAUKYN KYLLEFISCI (ULOAGNI-GORDANGAONNYALUFHERMASNYHELGFG SEFETYWEELLYNLEFUL-GPAFFAARANSOLYCAVYOANSRAPGE O-FYVYEELLYNLEFAL-GPAFFAARSDESKAREVYYDELAALTKKA H-FEYVKFALLDTIFEEVPALMMSPARKSANSEAYDHJVAAIKGEMEPAE				
Conclusions: ClustalW (the most popular program) gives different answers than a set of recent, improved alternatives.					
ino orie metho	Page 195				

Multiple sequence alignment: properties

- not necessarily one "correct" alignment of a protein family
- protein sequences evolve...
- ...the corresponding three-dimensional structures of proteins also evolve
- may be impossible to identify amino acid residues that align properly (structurally) throughout a multiple sequence alignment
- for two proteins sharing 30% amino acid identity, about 50% of the individual amino acids are superposable in the two structures

Page 180

Multiple sequence alignment: features

- some aligned residues, such as cysteines that form disulfide bridges, may be highly conserved
- there may be conserved motifs such as a transmembrane domain
- · there may be conserved secondary structure features
- there may be regions with consistent patterns of insertions or deletions (indels)

Page 181

Multiple sequence alignment: uses

- MSA is more sensitive than pairwise alignment to detect homologs
- BLAST output can take the form of a MSA, and can reveal conserved residues or motifs
- Population data can be analyzed in a MSA (PopSet)
- A single query can be searched against a database of MSAs (e.g. PFAM)
- Regulatory regions of genes may have consensus sequences identifiable by MSA

	e ClustalW	to do a	progres	ssive MSA			
KTUP (WORD SIZE)	WINDOW	SCORE TYPE	TOPDIAG	PAIRGAP			
def 💌	def 💌	percent 💌	def 💌	def 💌			
MATRIX	GAP OPEN	END GAPS	GAP EXTENSION	GAP DISTANCES			
def 💌	def 💌	def 💌	def 💌	def 💌			
0	UTPUT	PH	YLOGENETIC TRE	E			
OUTPUT FORMAT	OUTPUT	TREE TYPE C	ORRECT DIST.	IGNORE GAPS			
aln w/numbers	▼ aligned ▼	none 💌	off 💌	off 💌			
Enter or Paste a set	of Sequences in any supp	ported format:		Help			
Deca globin 2hbB NP 000509.1 [Homo sepiene] NVHLTPEKSAVTALVGKVNVDEVGGEALGRLLVVVPWTGRFFESFGDLSTPAVHKNPKVKAHGKVL ATSOLARLDNLKGTFATISELHCDKLHVVPENFRLLGAVUVVLAHHFGKETFPVQLATQRVVAGVA ALAKKYH Swgoglobin 2NH1 NP 005359.1 [Romo sepiene] McLSDGEVQUVLAVVGKVKADFCHGQEVLIELFKGAPTIEKTPKRHLKSEDERKASEDLKKHGATV 11.GGTLKWKMPH FTERLJGANTHERFUTURUTEFERTIGETIGTUGGERGEDAGLADAGNAMULIELE							
http://w	ww.ebi.	[Homo sapiens]					
ac uk/c	lustalw/	FALEPDLLPLFQYN	ICROFSSPEDCLS	SPEFLDHIRKVE-			
	านรเลาพา	wse	Run	Reset			

Feng-Doolittle MSA (implemented in ClustalW and other programs) occurs in 3 stages

- Do a set of global pairwise alignments (Needleman and Wunsch's dynamic programming algorithm)
- [2] Create a guide tree
- [3] Progressively align the sequences

Feng-Doolittle stage 2: guide tree

- Convert similarity scores to distance scores
- A tree shows the distance between objects
- Use UPGMA (defined in the phylogeny lecture)
- ClustalW provides a syntax to describe the tree
- · A guide tree is not a phylogenetic tree

Sertà	Name		Leniasi	SeaB	None		Len(aa)	Score
=====				nedb			=========	
1	human NP 000509		147	2	Pan troglody	ytes XP 508242	147	100
1	human_NP_000509		147	3	Canis_famil:	iaris_XP_537902	147	89
1	human_NP_000509		147	4	Mus_musculu:	s_NP_058652	147	80
1	human_NP_000509		147	5	Gallus_gall	us_XP_444648	147	69
2	Pan_troglodytes_XP	508242	147	3	Canis_famil:	iaris_XP_537902	147	89
2	Pan_troglodytes_XP	508242	147	4	Mus_musculu:	s_NP_058652	147	80
2	Pan_troglodytes_XP	508242	147	5	Gallus_gall	us_XP_444648	147	69
3	Canis_familiaris_XI	P_537902	147	4	Mus_musculu:	s_NP_058652	147	78
3	Canis_familiaris_X	P_537902	147	5	Gallus_gally	us_XP_444648	147	71
4	Mus_musculus_NP_058	3652	147	5	Gallus_gally	us_XP_444648	147	66
	Imalian (Construction) Construction 10.05272, related 10.05272, related 10.05273, related 10.05273, globins 6.00231, related 10.0231, related 6.00231, related							l S
		human_NP Pan_trogloc Canis_famili	_000509: 0. tytes_XP_4 aris_XP_53 - Mus_mus	00000 i08242 i7902: culus_	: 0.00000 0.04932 NP_058652: 0.	12075 - Gallus_gallus_XP_	444648: 0.2	21259
							Pa	ae 188

Feng-Doolittle stage 3: progressive alignment

- Make a MSA based on the order in the guide tree
- Start with the two most closely related sequences
- Then add the next closest sequence
- Continue until all sequences are added to the MSA
- Rule: "once a gap, always a gap."

Clus	stal W al	ignmei ultiple seque	nt of	f 5 c	lista	ntly	/ rel	ate	d glo	obins
bet cyt nyo neu leg	a_globin oglobin globin roglobin hemoglobin	MEKVPGEMEIEF	NVHI RERSEEI NGI NGP NGP	TPEEKS SEAERK SDGEWQ ERPEPE TEKQEA	AVTALWG AVQANWAJ LVLNVWG LIRQSWR LVNSSWE : *	KVNVD RLYANCE KVEADIP AVSRSPL LFKQNPS	EVGGEAL DVGVAIL GHGQEVL EHGTVLF -YSVLFY	GRLLVV VRFFVN IRLFKGI ARLFALI TIILKK ::	YPWTQRFF FPSAKQYF HPETLEKF EPDLLPLF APAAKGMF * *	43 60 44 42 43
bet cyt myd neu leg	a_globin oglobin globin roglobin hemoglobin	ES-FGDLSTPDJ SQ-FKHMEDPLE DK-FKHLKSEDF QYNCRQFSSPEI SFLKDSAF . :.	AVHGNPKV IMERSPQI IMKASEDI ICLSSPEP IVVDSPKI	KAHGKK RKHACR KKHGAT FLDHIRK QAHAEK *	VLGAFSD VHGALNT VLTALGG VHLVIDA VFGMVHD: *: -	GLAH VVENLHD ILKK AVTNVED SAIQLRA	LDNLKGT PDKV3SV KGHHEAE LSSLEEY SGEVVLG	FATLSE LALVGK IKPLAQ: LASLGRI DATLGA: :.	LHCDKLHV AHALKHKV SHATKHKI KHRAVG-V IHIQKGVV * :	99 119 100 101 99
bet cyt myd neu leg	a_globin oglobin globin roglobin hemoglobin	DPENFRLLGNVI EPVYFKILSGVI PVKYLEFISECI KLSSFSTVGESI DP-HFVVVKEAI	VCVLAHE ILEVVAEE IIQVLQSF LVMLEKO LETIKEA	HFGKEFT FASDFF CHPGDFG CLGPAFT ASGERWS :	PPVQAAY) PETQRAW, ADAQGAM PATRAAW EELSTAW *	UKVVAGV AKLRGLI NKALELF SQLYGAV EVAYEGL	ANALAHK YSHVTAA RKDNASN VQANSRG ASAIKKA . :	YH YKEVGW YKELGF WDGE YN	VQQVPNAT DG	147 179 154 151 146
bet cyt myo neu leg	a_globin oglobin globin roglobin hemoglobin	TPPATLPSSGP	190							Fig. 6.3 Page 187

human_NP_000509	NVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDI	S 50
Pan_troglodytes_XP_508242	NVHLTPEEKSAVTALUGKVNVDEVGGEALGRLLVVYPWTQRFFE5FGDI	S 50
Canis_familiaris_XP_537902	NVHLTAEEKSLVSGLUGKVNVDEVGGEALGRLLIVYPUTQRFFD3FGDI	3 50
Gallus_gallus_XP_444648	NVHLTDAEKSAVSCLWAKVNPDEVGGEALGRLLVVYPWTURYFDSFGDI	3 50
	NYNWIAEEKULIIGLUGKYNYAECGAEALAKLLLYTPUIUKPASPOHI *** * **. :: **.*** * *.***.***	a 50 *
human_NP_000509	TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHV	D 100
Pan_troglodytes_XP_508242	TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHV	D 100
Canis_familiaris_XP_537902	TPDAVMSNAKVKAHGKKVLNSFSDGLKNLDNLKGTFAKLSELHCDKLHV	D 100
Mus_musculus_NP_058652 Gallus_gallus_XP_444648	SASAIMGNPKVKAHGKKVITAFNEGLKNLDNLKGTFASLSELHCDKLHV	D 100
	SPTAILGNPMYRAHGKKVLTSFGDAYKNLDNIKNTFSQLSELHCDKLH	* 100
human_NP_000509	PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH J	47
Pan_troglodytes_XP_508242	PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH J	47
Canis_familiaris_XP_537902	PENFKLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH J	47
Mus_musculus_NF_058652	PENFRLLGNAIVIVLGHHLGKDFTPAAQAAFQKVVAGVATALAHKYH 1	47
Gallus_gallus_XP_444648	PENFRLLGDILIIVLAAHFSKDFTPECQAAWQKLVRVVAHALARKYH) ****:***: :: **. *:.*:*** ***:**: ** ***:**:	.47

Why "once a gap, always a gap"?

- There are many possible ways to make a MSA
- Where gaps are added is a critical question
- Gaps are often added to the first two (closest) sequences
- To change the initial gap choices later on would be to give more weight to distantly related sequences
- To maintain the initial gap choices is to trust that those gaps are most believable

Page 189

Outline for today

- 1. Homology and pairwise alignment
- 2. BLAST
- 3. Multiple sequence alignment

4. Phylogeny and evolution

Learning objectives: phylogeny

1. You should know how to create a phylogenetic tree from a multiple sequence alignment

2. You should know the parts of a tree

3. You should know how to interpret the biological (historical) meaning of a tree

Molecular clock hypothesis

In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes *c*, and fibrinopeptides. Some proteins appeared to evolve slowly, while others evolved rapidly.

Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock:

For every given protein, the rate of molecular evolution is approximately constant in all evolutionary lineages

Molecular clock hypothesis: conclusions

Dickerson drew the following conclusions:

- For each protein, the data lie on a straight line. Thus, the rate of amino acid substitution has remained constant for each protein.
- The average rate of change differs for each protein. The time for a 1% change to occur between two lines of evolution is 20 MY (cytochrome c), 5.8 MY (hemoglobin), and 1.1 MY (fibrinopeptides).
- The observed variations in rate of change reflect functional constraints imposed by natural selection.

Page 223

Five stages of phylogenetic analysis

- [1] Selection of sequences for analysis
- [2] Multiple sequence alignment
- [3] Selection of a substitution model
- [4] Tree building
- [5] Tree evaluation

