
Protein Structure Prediction: Secondary Structure

Ingo Ruczinski

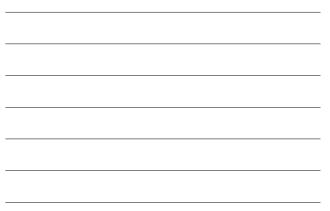
Department of Biostatistics, Johns Hopkins University

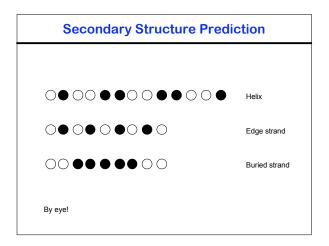
Secondary Structure Assignment

Eight states from DSSP:

- H: α–helix
- G: 3₁₀ helix I: π-helix
- E: β–strand
- B: bridge
- Τ: β–turn
- S: bend
 C: coil

CASP standard:


H = (H, G, I), E = (E, B), C = (C, T, S).


Second	ary Structure Prediction						
Given the sequence of amino acids of a protein, what is its secondary structure?							
Primary structure:	G <u>HWIAT</u> R <u>GOLIREAYEDY</u> RHF <u>SS</u> ECPFIP						
Secondary structure:	С <u>ЕЕЕЕЕ</u> С <u>НННННННННН</u> ССС <u>НН</u> СССССС						
Notation: H: Helix	E: Strand C: Coil						

Conformational Preferences of Amino Acids

Amino	α-helix	Preference β-strand	Reverse turn	
lu	1.59	0.52	1.01	۲ ۲
Ala	1.41	0.72	0.82	
Leu	1.34	1.22	0.57	
let	1.30	1.14	0.52	> Helical Preference.
Sin	1.27	0.98	0.84	ricicari reference.
.ys	1.23	0.69	1.07	
Arg	1.21	0.84	0.90	
His	1.05	0.80	0.81)
Val	0.90	1.87	0.41)
lle	1.09	1.67	0.47	
Tyr	0.74	1.45	0.76	
Cys	0.66	1.40	0.54	> Strand Preference.
Trp	1.02	1.35	0.65	
Phe	1.16	1.33	0.59	
Thr	0.76	1.17	0.90)
Gly	0.43	0.58	1.77	<u>ا</u>
Asn	0.76	0.48	1.34	
Pro	0.34	0.31	1.32	Turn Preference.
Ser	0.57	0.96	1.22	
Asp	0.99	0.39	1.24	J

Amino		Preference	Reverse turn	
acid	α-helix	β-strand		
Glu Ala	1.59	0.52	1.01	
Leu	1.41			
Met	1.34	1.22	0.57	
GIn	1.30	0.98	0.52	Extended flexible side chains.
Lvs	1.27	0.90	1.07	
Arg	1.21	0.84	0.90	
His	1.05	0.80	0.81	
Val	0.90	1.87	0.41)
lle	1.09	1.67	0.47	
Tyr	0.74	1.45	0.76	
Cys	0.66	1.40	0.54	Bulky side chains, beta-branched
Trp	1.02	1.35	0.65	
Phe	1.16	1.33	0.59	
Thr	0.76	1.17	0.90)
Glv	0.43	0.58	1.77	2
Asn	0.43	0.58	1.34	Restricted conformations, side
Pro	0.76	0.40	1.34	(,
Ser	0.57	0.96	1.32	C chain – main chain interactions.
Asp	0.99	0.39	1.24	onani inani onani interactiono.

A Little Bit of History...

The early methods for secondary structure prediction suffered from lack of data, and were usually performed on single sequences.

1974: Chou and Fasman. Propensities of formation based upon frequency of occurrence, rule based.

1974: Lim. Theory based on chemical side-chain properties, very complex rules.

1978: Garnier, Osguthorpe, Robson. Sliding window, consensus approach.

The prediction accuracy for all of those methods were roughly 50-55%.

Measures for Prediction Accuracy

The standard measure for prediction accuracy is (still) the Q3 measure. It is simply the proportion (in percent) of all amino acids that have correct matches for the three states C, E, H.

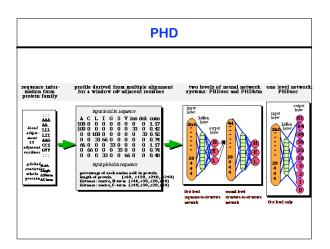
In recent years, the segment overlap measure (SOV) has been used more extensively. It aims for measuring how well secondary structure elements have been predicted rather than individual residues.

Rost et al (1994), JMB 235, pp 13-26.

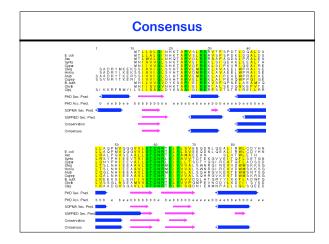
Automated Methods

The availability of large families of homologous sequences together with advances in computing techniques has pushed the prediction accuracy well above 70%. Most methods are available as web servers. They include:

PHD


http://www.emblheidelberg.de/predictprotein/predictprotein.html

PSI-PRED


http://bioinf.cs.ucl.ac.uk/psipred/

JPRED

http://www.compbio.dundee.ac.uk/~www-jpred/

