Homework Assignment 1

(Due Monday, February 1, 2010)

1. Suppose a test for HIV correctly gives a positive result, if a person is infected, with probability 99.5%, and correctly gives a negative result, if a person is not infected, with probability 98%.
(a) Suppose that 0.1% of a population are infected with HIV. Consider drawing a person at random and testing him or her for HIV infection. Calculate Pr (infected | test is positive).
(b) Consider a person drawn from a high-risk group, so that they have, a priori, probability 30% of being infected. Calculate $\operatorname{Pr}($ infected \mid test is positive $)$.

Do the calculations using two different approaches: 2×2 tables as in class, and Bayes' rule.
2. The seed of Mendel's pea plants were either smooth or wrinkled, the result of a single gene with two alleles, A (smooth) and a (wrinkled), with A dominant to a, so that seed with genotype $A A$ or $A a$ are smooth and seed with genotype aa are wrinkled. \rightarrow We cross two pure-breeding lines, one with smooth seed and genotype $A A$ and the other with wrinkled seed and genotype aa, to obtain the F_{1} with genotype A a. \rightarrow We self an F_{1} and pick a random F_{2} seed. \rightarrow We grow up the F_{2} and self it to obtain a random F_{3} seed. Calculate the following:
(a) $\operatorname{Pr}\left(F_{2}\right.$ seed is smooth $)$
(b) $\operatorname{Pr}\left(F_{2}\right.$ seed has genotype $\left.A a\right)$
(c) $\operatorname{Pr}\left(F_{2}\right.$ seed has genotype $A a \mid$ it is smooth $)$
(d) $\operatorname{Pr}\left(F_{3}\right.$ seed is smooth $\mid F_{2}$ has genotype $\left.A A\right)$
(e) $\operatorname{Pr}\left(F_{3}\right.$ seed is smooth $\mid F_{2}$ has genotype A a)
(f) $\operatorname{Pr}\left(F_{3}\right.$ seed is smooth $)$
(g) $\operatorname{Pr}\left(F_{3}\right.$ seed is smooth $\mid F_{2}$ is smooth $)$
3. Consider the following data:
$\begin{array}{llllllllll}12.5 & 10.0 & 9.2 & 10.0 & 9.1 & 11.0 & 10.7 & 9.2 & 10.1 & 9.1\end{array}$
Calculate (on a piece of paper or with a hand calculator) the arithmetic mean, median, and SD of the above set of numbers. How would the mean, median, and SD change if you
(a) added 2 to each data point?
(b) multiplied each data point by 10 ?
(c) multiplied each data point by -10 ?
(d) added 2 to each data point and then multiplied each by 10 ?
(e) multiplied each data point by 10 and then added 2 to each?
4. Consider the following histogram.

(a) Which of the following is true? Choose one and explain briefly.
i. The mean is larger than the median.
ii. The median is larger than the mean.
iii. The mean and the median are about the same.
(b) Is the SD about 10, about 25 or about 50? Explain briefly.
5. Consider the following figures (taken from The Milwaukee Journal Sentinel, Friday, 18 Jan 2002, Senior Focus, pg 2).

Do not expect
care from
their children

72\% non-Hispanic Whites
$\square 68 \%$ Atrican Americans
60% Hispanic Americans
49% Asian Americans
Source: AARP Survey
(a) Name three things wrong with these figures.
(b) Sketch an improved version of these figures.

