Quantitative Analysis of Clinical Data

Ingo Ruczinski

Associate Professor, Department of Biostatistics, Johns Hopkins University

Office: E3618 SPH Email: ingo@jhu.edu
http://www.biostat.jhsph.edu/~iruczins

Logistics

Lectures: M 5:30pm-8:30pm, W2030 SPH

Office hours: By appointment.
Textbooks: [required]
Dawson and Trapp (2002): Basic and clinical biostatistics.
McGraw-Hill 4th edition.
[recommended]
Gonick \& Smith (1993): The cartoon guide to statistics.
Collins Reference 1st edition.
Webpage: www.biostat.jhsph.edu/iruczins/teaching/390.672/

Course learning objectives

\longrightarrow Read, understand, and critically discuss quantitative methods used in the scientific literature on clinical investigation.
\longrightarrow Analyze and interpret basic quantitative data.

Topics covered:

Basic statistical display of data, probabilities and distributions, confidence intervals, tests of hypotheses, likelihood and statistical evidence, tests for goodness of fit, contingency tables, analysis of variance, multiple comparisons, regression and correlation, basic experimental design, observational studies, survival analysis, prediction, methods of evidence-based medicine and decision analysis.

Grading

- This course is not offered for credit, it's a certificate course.
- The course is pass or fail.
- There are weekly assignments.
- There is a final project (written critique and presentation).

Example 1

Does higher survival rate mean longer life?

\longrightarrow No.

Gigerenzer et. al. (2008)

Example 2

A test with 99% sensitivity and 99% specificity returns a positive result. What is the probability that the person has the disease?

\longrightarrow It depends.
(On the prevalence of the disease: for example, it is $<10 \%$ if the prevalence is 0.1%, 50% if the prevalence is 1%, and $>90 \%$ if the prevalence is 10%.)

Example 3

A diagnostic test returns a positive result. A physician might conclude that:

1. The subject probably has the disease.
2. The test result is evidence that the subject has the disease.
3. The subject should be treated for the disease.

Isn't that all the same?

\longrightarrow Not even close.

Example 4

Summarizing and Presenting Data

Summary statistics

- mean (average)
- median
- mode
- geometric mean
- harmonic mean

Scale

- standard deviation (SD)
- inter-quartile range (IQR)
- range

Other

- quantile
- quartile
- quintile

Summary statistics

$$
\begin{aligned}
& \qquad \text { mean }=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n \\
& \text { geometric mean }=\sqrt[n]{\prod_{i=1}^{n} x_{i}}=\exp \left\{\frac{1}{n} \sum_{i=1}^{n} \log x_{i}\right\} \\
& \text { harmonic mean }=1 /\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1 / x_{i}\right)\right\}
\end{aligned}
$$

Measures of location / center

- Forget about the mode.
- The mean is sensitive to outliers.
- The median is resistant to outliers.
- The geometric mean is used when a logarithmic transformation is appropriate (for example, when the distribution has a long right tail).
- The harmonic mean may be used when a reciprocal transformation is appropriate (very seldom).

Measures of location / center

Measures of location / center

A key point

The different possible measures of the "center" of the distribution are all allowable.

You should consider the following though:
\longrightarrow Which is the best measure of the "typical" value in your particular setting?
\longrightarrow Be sure to make clear which "average" you use.

Standard deviation (SD)

Sample variance $=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=s^{2}$
Sample SD $\quad=\sqrt{s^{2}}=s$
$=$ RMS (distance from average)
= "typical" distance from the average
$=$ sort of like ave $\left\{\left|x_{i}-\bar{x}\right|\right\}$
$\longrightarrow \quad$ Remember: $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Standard deviation (SD)

Standard deviation (SD)

Dotplots

- Few data points per group.
- Possibly many groups.

Histograms

Symmetric distribution

Skewed distribution

- Many data points per group.
- Few groups.
- Area of the rectangle is proportional to the number of data points in the interval.
- Typically $2 \sqrt{n}$ bins is a good choice.

Boxplots

- Many data points.
- Possibly many groups.
- Displays the minimum, lower quartile, median, upper quartile, and the maximum.

Skyscraper-with-antenna plots

Skyscraper-with-antenna plots

Skyscraper-with-antenna plots

3D graphics

Bad graphs

The top ten worst graphs
With apologies to the authors, we provide the following list of the top ten worst graphs in the scientific literature. As these examples indicate, good scientists can make mistakes.

1. Roeder K (1994) DNA fingerprinting: A review of the controversy (with discussion). Statistical Science 9:222-278, Figure 4
[The article । The figure | Discussion]
2. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from HardyWeinberg equilibrium. American Journal of Human Genetics 76:967-986, Figure 1 [The article | Fig 1AB | Fig 1CD \| Discussion]
3. Epstein MP, Satten GA (2003) Inference on haplotype effects in case-control studies using unphased genotype data. American Journal of Human Genetics 73:1316-1329, Figure 1 [The article I The figure I Discussion]

4. Mykland P, Tierney L, Yu B (1995) Regeneration in Markov chain samplers. Journal of the American Statistical Association 90:233-241, Figure 1 [The article I The figure I Discussion]

5. Hummer BT, Li XL, Hassel BA (2001) Role for p53 in gene induction by double-stranded RNA. J Virol 75:7774-7777, Figure 4 [The article I The figure I Discussion]

Displaying data well

- Let the data speak.

Show as much information as possible, taking care not to obscure the message.

- Science not sales.

Avoid unnecessary frills, especially gratuitous colors and 3D.

- In tables, every digit should be meaningful. Don't drop ending 0's!
- Be accurate and clear.

What is statistics?

We may at once admit that any inference from the particular to the general must be attended with some degree of uncertainty, but this is not the same as to admit that such inference cannot be absolutely rigorous, for the nature and degree of the uncertainty may itself be capable of rigorous expression.

- Sir R. A. Fisher

What is statistics?

\longrightarrow Data exploration and analysis.
\longrightarrow Inductive inference with probability.
\longrightarrow Quantification of evidence and uncertainty.

What is probability?

\longrightarrow A branch of mathematics concerning the study of random processes.

Note: Random does not mean haphazard!
What do I mean when I say the following?
The probability that he is a carrier ...
The chance of rain tomorrow ...
\longrightarrow Degree of belief.
\longrightarrow Long term frequency.

The set-up

Experiment

\rightarrow A well-defined process with an uncertain outcome.
Draw 2 balls with replacement from an urn containing 4 red and 6 blue balls.

Sample space \mathcal{S}
\rightarrow The set of possible outcomes.
\{ RR, RB, BR, BB \}

Event

\rightarrow A set of outcomes from the sample space (a subset of \mathcal{S}).
$\{$ the first ball is red $\}=\{R R, R B\}$

Events are said to occur if one of the outcomes they contain occurs. Probabilities are assigned to events.

Probability rules

$$
\begin{array}{ll}
0 \leq \operatorname{Pr}(\mathrm{A}) \leq 1 & \text { for any event } \mathrm{A} \\
\operatorname{Pr}(\mathcal{S})=1 & \text { where } \mathcal{S} \text { is the sa } \\
\operatorname{Pr}(\mathrm{A} \text { or } \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B}) & \text { if } \mathrm{A} \text { and } \mathrm{B} \text { are } m u \\
\operatorname{Pr}(\text { not } \mathrm{A})=1-\operatorname{Pr}(\mathrm{A}) & \text { complement rule } \\
\text { Example }
\end{array}
$$

Study with 10 subjects:

- 2 infected with virus X (only)
- 1 infected with virus Y (only)
- 5 infected with both X and Y
- 2 infected with neither

Experiment: Randomly select one subject (each equally likely).

Events: $\quad A=\{$ subject is infected with $X\} \quad \operatorname{Pr}(A)=7 / 10$

$$
\begin{array}{ll}
B=\{\text { subject is infected with } Y\} & \operatorname{Pr}(B)=6 / 10 \\
C=\{\text { subject is infected with only } X\} & \operatorname{Pr}(C)=2 / 10
\end{array}
$$

Sets

Conditional probability

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Probability}$ of A given $B=\operatorname{Pr}(\mathrm{A}$ and B$) / \operatorname{Pr}(\mathrm{B})$

Example:
[2 w/X only; $1 \mathrm{w} / \mathrm{Y}$ only; $5 \mathrm{w} /$ both; $2 \mathrm{w} /$ neither]

$A=\{$ infected with $X\}$
$B=\{$ infected with $Y\}$

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=(5 / 10) /(6 / 10)=5 / 6 \\
& \operatorname{Pr}(\mathrm{~B} \mid \mathrm{A})=(5 / 10) /(7 / 10)=5 / 7
\end{aligned}
$$

More rules and a definition

Multiplication rule:
$\longrightarrow \operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A)$
A and B are independent if $\quad \operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$

If A and B are independent:
$\longrightarrow \operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$
$\longrightarrow \operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)$

Diagnostics

Diagnostics

Sensitivity
Specificity
Positive Predictive Value
Negative Predictive Value Accuracy
$\rightarrow \operatorname{Pr}$ (positive test \mid disease)
$\rightarrow \operatorname{Pr}$ (negative test \mid no disease)
$\rightarrow \operatorname{Pr}$ (disease | positive test)
$\rightarrow \operatorname{Pr}$ (no disease \| negative test)
$\rightarrow \operatorname{Pr}$ (correct outcome)

Diagnostics

Sensitivity
Specificity
Positive Predictive Value
Negative Predictive Value Accuracy
\rightarrow TP / (TP +FN)
\rightarrow TN / (FP+TN)
\rightarrow TP / (TP +FP)
$\rightarrow \mathrm{TN} /(\mathrm{FN}+\mathrm{TN})$
$\rightarrow(\mathrm{TP}+\mathrm{TN}) /(\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN})$

Diagnostics

Assume that some disease has a 0.1% prevalence in the population. Assume we have a test kit for that disease that works with 99% sensitivity and 99% specificity. What is the probability of a person having the disease given the test result is positive, if we randomly select a subject from
\longrightarrow the general population?
\longrightarrow a high risk sub-population with 10% disease prevalence?

Diagnostics

Diagnostics

Diagnostics

Diagnostics

Sensitivity
Specificity
Positive Predictive Value
Negative Predictive Value Accuracy
$\rightarrow 9900 /(9900+100)=99 \%$
$\rightarrow 89100 /(900+89100)=99 \%$
$\rightarrow 9900 /(9900+900) \approx 92 \%$
$\rightarrow 89100 /(100+89100) \approx 99.9 \%$
$\rightarrow(9900+89100) / 100000=99 \%$

Bayes rule

$\longrightarrow \operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}) \times \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})$
$\longrightarrow \operatorname{Pr}(\mathrm{A})=\operatorname{Pr}(\mathrm{A}$ and B$)+\operatorname{Pr}(\mathrm{A}$ and not B$)$

$$
=\operatorname{Pr}(\mathrm{B}) \times \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})+\operatorname{Pr}(\operatorname{not} \mathrm{B}) \times \operatorname{Pr}(\mathrm{A} \mid \operatorname{not} \mathrm{B})
$$

$\longrightarrow \operatorname{Pr}(B)=\operatorname{Pr}(B$ and $A)+\operatorname{Pr}(B$ and not $A)$

$$
=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})+\operatorname{Pr}(\operatorname{not} \mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \operatorname{not} \mathrm{A})
$$

$\longrightarrow \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}$ and B$) / \operatorname{Pr}(\mathrm{B})$

$$
=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) / \operatorname{Pr}(\mathrm{B})
$$

Bayes rule

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=$
$\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) / \operatorname{Pr}(\mathrm{B})=$
$\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) /\{\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})+\operatorname{Pr}(\operatorname{not} \mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \operatorname{not} \mathrm{A})\}$
Let A denote disease, and B a positive test result!
$\longrightarrow \operatorname{Pr}(A \mid B)$ is the probability of disease given a positive test result.
$\longrightarrow \operatorname{Pr}(A)$ is the prevalence of the disease.
$\longrightarrow \operatorname{Pr}($ not $A)$ is 1 minus the prevalence of the disease.
$\longrightarrow \operatorname{Pr}(B \mid A)$ is the sensitivity of the test.
$\longrightarrow \operatorname{Pr}($ not $B \mid$ not $A)$ is the specificity of the test.
$\longrightarrow \operatorname{Pr}(B \mid$ not $A)$ is 1 minus the specificity of the test.

Random Variables and Distributions

Random variables

Random variable: A number assigned to each outcome of a random experiment.

Example 1: I toss a brick at my neighbor's house.
$D=$ distance the brick travels
$X=1$ if I break a window; 0 otherwise
$Y=$ cost of repair
$T=$ time until the police arrive
$N=$ number of people injured

Example 2: Apply a treatment to 10 subjects.
$X=$ number of people that respond
$P=$ proportion of people that respond

Further examples

$$
\begin{array}{ll}
\text { Example 3: } & \text { Pick a random student in the School. } \\
S=1 \text { if female; } 0 \text { otherwise } \\
H=\text { his/her height } \\
W=\text { his/her weight } \\
Z=1 \text { if Canadian citizen; } 0 \text { otherwise } \\
T=\text { number of teeth he/she has }
\end{array}
$$

Example 4: \quad Sample 20 students from the School
$H_{i}=$ height of student i
$\bar{H}=$ mean of the 20 student heights
$S_{H}=$ sample SD of heights
$T_{i}=$ number of teeth of student i
$\bar{T}=$ average number of teeth

Random variables are ...

Discrete: \quad Take values in a countable set (e.g., the positive integers).

Example: the number of teeth, number of gall stones, number of birds, number of cells responding to a particular antigen, number of heads in 20 tosses of a coin.

Continuous: Take values in an interval (e.g., $[0,1]$ or the real line).

Example: height, weight, mass, some measure of gene expression, blood pressure.

Random variables may also be partly discrete and partly continuous (for example, mass of gall stones, concentration of infecting bacteria).

Probability function

Consider a discrete random variable, X.
The probability function (or probability distribution, or probability mass function) of X is

$$
\mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})
$$

Note that $p(x) \geq 0$ for all x and $\sum p(x)=1$.

x	$\mathrm{p}(\mathrm{x})$
1	0.5
3	0.1
5	0.1
7	0.3

Cumulative distribution function (cdf)

The cdf of X is $\mathrm{F}(\mathrm{x})=\operatorname{Pr}(X \leq \mathrm{x})$

x	$\mathrm{p}(\mathrm{x})$
1	0.5
3	0.1
5	0.1
7	0.3

x	$\mathrm{F}(\mathrm{x})$
$(-\infty, 1)$	0
$[1,3)$	0.5
$[3,5)$	0.6
$[5,7)$	0.7
$[7, \infty)$	1.0

Binomial random variable

Prototype: The number of heads in n independent tosses of a coin, where $\operatorname{Pr}($ heads $)=p$ for each toss.
$\rightarrow \mathrm{n}$ and p are called parameters.
Alternatively, imagine an urn containing red balls and black balls, and suppose that p is the proportion of red balls. Consider the number of red balls in n random draws with replacement from the urn.

Example 1: \quad Sample n people at random from a large population, and consider the number of people with some property (e.g., that are graduate students or that have exactly 32 teeth).

Example 2: \quad Apply a treatment to n subjects and count the number of responders (or non-responders).

Example 3: Apply a treatment to 30 groups of 10 subjects. Count the number of groups with at least two responders.

Binomial distribution

Consider the Binomial(n,p) distribution.
That is, the number of red balls in n draws with replacement from an urn for which the proportion of red balls is p.
\longrightarrow What is its probability function?

Example: Let $X \sim \operatorname{Binomial}(\mathrm{n}=9, \mathrm{p}=0.2)$.
\longrightarrow We seek $p(x)=\operatorname{Pr}(X=x)$ for $x=0,1,2, \ldots, 9$.
$p(0)=\operatorname{Pr}(X=0)=\operatorname{Pr}($ no red balls $)=(1-p)^{n}=0.8^{9} \approx 13 \%$.
$p(9)=\operatorname{Pr}(X=9)=\operatorname{Pr}($ all red balls $)=p^{n}=0.2^{9} \approx 5 \times 10^{-7}$
$p(1)=\operatorname{Pr}(X=1)=\operatorname{Pr}($ exactly one red ball $)=\ldots$?

Binomial distribution

$$
\begin{aligned}
\mathrm{p}(1)= & \operatorname{Pr}(
\end{aligned}(=1)=\operatorname{Pr}(\text { exactly one red ball }) .
$$

How about $\mathrm{p}(2)=\operatorname{Pr}(X=2)$?
How many outcomes have 2 red balls among the 9 balls drawn?
\longrightarrow This is a problem of combinatorics. That is, counting!

Getting at $\operatorname{Pr}(X=2)$

RRBBBBBBB RBRBBBBBB RBBRBBBBB RBBBRBBBB RBBBBRBBB RBBBBBRBB RBBBBBBRB RBBBBBBBR BRRBBBBBB BRBRBBBBB BRBBRBBBB BRBBBRBBB BRBBBBRBB BRBBBBBRB BRBBBBBBR BBRRBBBBB BBRBRBBBB BBRBBRBBB BBRBBBRBB BBRBBBBRB BBRBBBBBR BBBRRBBBB BBBRBRBBB BBBRBBRBB BBBRBBBRB BBBRBBBBR BBBBRRBBB BBBBRBRBB BBBBRBBRB BBBBRBBBR BBBBBRRBB BBBBBRBRB BBBBBRBBR BBBBBBRRB BBBBBBRBR BBBBBBBRR

How many are there?

$$
9 \times 8 / 2=36
$$

The binomial coefficient

The number of possible samples of size k selected from a population of size n :

$$
\binom{n}{k}=\frac{n!}{k!\times(n-k)!}
$$

$\longrightarrow \mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times 3 \times 2 \times 1$
$\longrightarrow 0!=1$

For a Binomial(n,p) random variable:

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

Example

Suppose $\operatorname{Pr}($ subject responds to treatment) $=90 \%$, and we apply the treatment to 10 random subjects.

$$
\begin{aligned}
\operatorname{Pr}(\text { exactly } 7 \text { subjects respond }) & =\binom{10}{7} \times(0.9)^{7} \times(0.1)^{3} \\
& =\frac{10 \times 9 \times 8}{3 \times 2} \times(0.9)^{7} \times(0.1)^{3} \\
& =120 \times(0.9)^{7} \times(0.1)^{3} \\
& \approx 5 \%
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(\text { fewer than } 9 \text { respond }) & =1-p(9)-p(10) \\
& =1-10 \times(0.9)^{9} \times(0.1)-(0.9)^{10} \\
& \approx 26 \%
\end{aligned}
$$

The world is entropy driven

Assume we are flipping a fair coin (independently) ten times. Let X be the random variable that describes the number of heads H in the experiment.
$\operatorname{Pr}($ TTTTTTTTTT $)=\operatorname{Pr}($ HTTHHHTHTH $)=(1 / 2)^{10}$
\longrightarrow There is only one possible outcome with zero heads.
\longrightarrow There are 210 possibilities for outcomes with six heads.

Thus,

$$
\begin{aligned}
& \longrightarrow \operatorname{Pr}(X=0)=(1 / 2)^{10} \approx 0.1 \% . \\
& \longrightarrow \operatorname{Pr}(X=6)=210 \times(1 / 2)^{10} \approx 20.5 \% .
\end{aligned}
$$

The world is entropy driven

Assume that in a lottery, six out of the numbers 1 through 49 are randomly selected as the winning numbers.
\longrightarrow There are 13,983,816 possible combinations for the winning numbers.

Hence $\operatorname{Pr}(\{1,2,3,4,5,6\})=\operatorname{Pr}(\{8,23,24,34,42,45\})=1 / 13983816$

The probability of the having six consecutive numbers as the winning numbers is
$\operatorname{Pr}(\{1,2,3,4,5,6\})+\cdots+\operatorname{Pr}(\{44,45,46,47,48,49\})$
$=44 \times(1 / 13983816) \approx 0.0003 \%$.

Binomial distributions

Binomial($\mathrm{n}=10, \mathrm{p}=0.1$)

Binomial($n=10, p=0.5$)

Binomial($n=10, p=0.3$)

Binomial($n=10, p=0.9$)

Binomial distributions

Binomial distributions

Binomial distributions

Binomial distributions

Binomial $(\mathrm{n}=400, \mathrm{p}=0.1)$

Expected value and standard deviation

\longrightarrow The expected value (or mean) of a discrete random variable X with probability function $p(x)$ is

$$
\mu=\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})
$$

\longrightarrow The variance of a discrete random variable X with probability function $p(x)$ is

$$
\sigma^{2}=\operatorname{var}(X)=\sum_{x}(x-\mu)^{2} p(x)
$$

\longrightarrow The standard deviation (SD) of X is

$$
\operatorname{SD}(X)=\sqrt{\operatorname{var}(X)}
$$

Mean and SD of binomial RVs

If $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, then

$$
\begin{gathered}
\mathrm{E}(X)=\mathrm{np} \\
\mathrm{SD}(X)=\sqrt{\mathrm{np(1-p)}}
\end{gathered}
$$

\longrightarrow Examples:

n	p	mean	SD
10	10%	1	0.9
10	30%	3	1.4
10	50%	5	1.6
10	90%	9	0.9

Binomial random variable

Number of successes in n trials where:
\longrightarrow Trials independent
$\longrightarrow p=\operatorname{Pr}($ success $)$ is constant

The number of successes in n trials does not necessarily follow a binomial distribution!

Deviations from the binomial:
\longrightarrow Varying p
\longrightarrow Clumping or repulsion (non-independence)

Examples

Suppose treatment response differs between genders:
$\operatorname{Pr}($ responds \mid male $)=10 \%$ but $\operatorname{Pr}($ responds \mid female $)=80 \%$.
\longrightarrow Pick 4 male and 6 female subjects.
The number of responders is not binomial.
\longrightarrow Pick 10 random subjects (with $\operatorname{Pr}($ subject is male) $=40 \%$). The number of responders is binomial. $p=0.4 \times 0.1+0.6 \times 0.8=0.52$.

Examples

Random subjects (40% males)

Poisson distribution

Consider a Binomial(n,p) where
$\longrightarrow \quad n$ is really large
$\longrightarrow p$ is really small
For example, suppose each well in a microtiter plate contains 50,000 T cells, and that 1/100,000 cells respond to a particular antigen.
Let X be the number of responding cells in a well.
\longrightarrow In this case, X follows a Poisson distribution
Let $\lambda=\mathrm{n} \mathrm{p}=\mathrm{E}(X)$.
$\longrightarrow \mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})=\mathrm{e}^{-\lambda} \lambda^{\mathrm{x}} / \mathrm{x}!$
Note that $S D(X)=\sqrt{\lambda}$.

Poisson distribution

Poisson($\lambda=1 / 2$)

Poisson($\lambda=2$)

Poisson($\lambda=1$)

Poisson($\lambda=4$)

Example

Suppose there are 100,000 T cells in each well of a microtiter plate. Suppose that 1/80,000 T cells respond to a particular antigen.

Let $X=$ number of responding T cells in a well.
$\longrightarrow X \sim \operatorname{Poisson}(\lambda=1.25)$.
$\longrightarrow \mathrm{E}(X)=1.25$
$\longrightarrow \mathrm{SD}(X)=\sqrt{1.25} \approx 1.12$.
$\operatorname{Pr}(X=0)=\exp (-1.25) \approx 29 \%$.
$\operatorname{Pr}(X>0)=1-\exp (-1.25) \approx 71 \%$.
$\operatorname{Pr}(X=2)=\exp (-1.25) \times(1.25)^{2} / 2 \approx 22 \%$.

$Y=a+b X$

Suppose X is a discrete random variable with probability function p , so that $\mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})$.
\longrightarrow Expected value: $\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})$
\longrightarrow Standard deviation: $\mathrm{SD}(X)=\sqrt{\sum_{\mathrm{x}}[\mathrm{x}-\mathrm{E}(\mathrm{X})]^{2} \mathrm{p}(\mathrm{x})}$
Let $Y=\mathrm{a}+\mathrm{b} X$ where a and b are numbers. Then Y is a random variable (like X), and
$\longrightarrow \mathrm{E}(Y)=\mathrm{a}+\mathrm{bE}(X)$
$\longrightarrow \mathrm{SD}(Y)=|\mathrm{b}| \mathrm{SD}(X)$
In particular, if $\mu=\mathrm{E}(X), \sigma=\mathrm{SD}(X)$, and $Z=(X-\mu) / \sigma$, then
$\longrightarrow \mathrm{E}(Z)=0$
$\longrightarrow S D(Z)=1$

$$
Y=a+b X
$$

Let X be a random variable with mean μ and $\operatorname{SD} \sigma$.
If $Y=X-\mu$, then
$\longrightarrow \mathrm{E}(Y)=0$
$\longrightarrow \mathrm{SD}(Y)=\sigma$

$Y=a+b X$

Let X be a random variable with mean μ and $\operatorname{SD} \sigma$.
If $Y=(X-\mu) / \sigma$, then
$\longrightarrow \mathrm{E}(Y)=0$
$\longrightarrow \mathrm{SD}(Y)=1$

Example

Suppose $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \quad \rightarrow \quad$ number of successes
$\longrightarrow \mathrm{E}(X)=\mathrm{np}$
$\longrightarrow S D(X)=\sqrt{n p(1-p)}$

Let $P=X / \mathrm{n} \quad \rightarrow \quad$ proportion of successes
$\longrightarrow \mathrm{E}(P)=\mathrm{E}(X / \mathrm{n})=\mathrm{E}(X) / \mathrm{n}=\mathrm{p}$
$\longrightarrow \mathrm{SD}(P)=\mathrm{SD}(X / \mathrm{n})=\mathrm{SD}(X) / \mathrm{n}=\sqrt{\mathrm{p}(1-\mathrm{p}) / \mathrm{n}}$

Continuous random variables

Suppose X is a continuous random variable.
Instead of a probability function, X has a probability density function (pdf), sometimes called just the density of X.
$\longrightarrow f(x) \geq 0$
$\longrightarrow \int_{-\infty}^{\infty} f(x) d(x)=1$
\longrightarrow Areas under curve $=$ probabilities

Means and standard deviations

Expected value:
\longrightarrow Discrete RV: $\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})$
\longrightarrow Continuous RV: $\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x$

Standard deviation:
\longrightarrow Discrete RV: $\operatorname{SD}(X)=\sqrt{\sum_{x}[\mathrm{x}-\mathrm{E}(\mathrm{X})]^{2} \mathrm{p}(\mathrm{x})}$
\longrightarrow Continuous RV: $\operatorname{SD}(X)=\sqrt{\int_{-\infty}^{\infty}[x-E(X)]^{2} f(x) d x}$

Uniform distribution

$X \sim \operatorname{Uniform}(\mathrm{a}, \mathrm{b})$
\longrightarrow Draw a number at random from the interval (a, b).

$$
\text { height }=\frac{1}{b-a}
$$

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } a<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
\longrightarrow \mathrm{E}(X) & =(a+b) / 2 \\
\longrightarrow \mathrm{SD}(X) & =(\mathrm{b}-\mathrm{a}) / \sqrt{12} \\
& \approx 0.29 \times(\mathrm{b}-\mathrm{a})
\end{aligned}
$$

Normal distribution

By far the most important distribution:
The normal distribution (also called the Gaussian distribution).

If $X \sim \mathrm{~N}(\mu, \sigma)$, then the pdf of X is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Note: $\mathrm{E}(X)=\mu$ and $\mathrm{SD}(X)=\sigma$.

Of great importance:

$$
\longrightarrow \text { If } X \sim \mathrm{~N}(\mu, \sigma) \text { and } Z=(X-\mu) / \sigma, \text { then } Z \sim \mathrm{~N}(0,1) .
$$

This is the standard normal distribution.

Normal distribution

\longrightarrow Remember:
$\operatorname{Pr}(\mu-\sigma \leq X \leq \mu+\sigma) \approx 68 \%$ and $\operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 95 \%$.

The normal CDF

Example

Suppose the heights of adult males in the U.S. are approximately normal distributed, with mean $=69$ in and $S D=3$ in.
\longrightarrow What proportion of men are taller than 5'7"?

$$
\begin{aligned}
& X \sim \mathrm{~N}(\mu=69, \sigma=3) \\
& Z=(X-69) / 3 \sim \mathrm{~N}(0,1) \\
& \operatorname{Pr}(X \geq 67)= \\
& \operatorname{Pr}(Z \geq(67-69) / 3)= \\
& \operatorname{Pr}(Z \geq-2 / 3)
\end{aligned}
$$

Example

Use either of the following three:

The answer: 75\%.

Another calculation

\longrightarrow What proportion of men are between $5^{\prime} 3$ " and 6 '?

$\operatorname{Pr}(63 \leq X \leq 72)=\operatorname{Pr}(-2 \leq Z \leq 1) \longrightarrow 82 \%$.

