Quantitative Analysis of Clinical Data

Ingo Ruczinski

Associate Professor, Department of Biostatistics, Johns Hopkins University

Office: E3618 SPH Email: ingo@jhu.edu

http://www.biostat.jhsph.edu/~iruczins

Logistics

Lectures:	M 5:30pm-8:30pm, W2030 SPH
Office hours:	By appointment.
Textbooks:	[required] Dawson and Trapp (2002): Basic and clinical biostatistics. McGraw-Hill 4th edition.
	[recommended] Gonick & Smith (1993): The cartoon guide to statistics. Collins Reference 1st edition.
Webpage:	www.biostat.jhsph.edu/ iruczins/teaching/390.672/

Course learning objectives

- → Read, understand, and critically discuss quantitative methods used in the scientific literature on clinical investigation.
- \longrightarrow Analyze and interpret basic quantitative data.

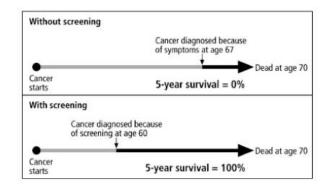
Topics covered:

Basic statistical display of data, probabilities and distributions, confidence intervals, tests of hypotheses, likelihood and statistical evidence, tests for goodness of fit, contingency tables, analysis of variance, multiple comparisons, regression and correlation, basic experimental design, observational studies, survival analysis, prediction, methods of evidence-based medicine and decision analysis.

Grading

- This course is **not** offered for credit, it's a *certificate* course.
- The course is pass or fail.
- There are weekly assignments.
- There is a final project (written critique and presentation).

Does higher survival rate mean longer life?

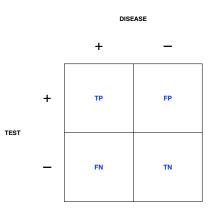


 \longrightarrow No.

Gigerenzer et. al. (2008)

Example 2

A test with 99% sensitivity and 99% specificity returns a positive result. What is the probability that the person has the disease?



 \rightarrow It depends.

(On the prevalence of the disease: for example, it is < 10% if the prevalence is 0.1%, 50% if the prevalence is 1%, and > 90% if the prevalence is 10%.)

Example 3

A diagnostic test returns a positive result. A physician might conclude that:

- 1. The subject probably has the disease.
- 2. The test result is evidence that the subject has the disease.
- 3. The subject should be treated for the disease.

Isn't that all the same?

 \rightarrow Not even close.

Example 4

Summarizing and Presenting Data

Summary statistics

Location / Center	 mean (average) median mode geometric mean harmonic mean
Scale	 standard deviation (SD) inter-quartile range (IQR) range
Other	 quantile quartile quintile

Summary statistics

$$mean = \frac{1}{n} \sum_{i=1}^{n} x_i = (x_1 + x_2 + \dots + x_n)/n$$

$$geometric mean = \sqrt[n]{\prod_{i=1}^{n} x_i} = \exp\left\{\frac{1}{n} \sum_{i=1}^{n} \log x_i\right\}$$

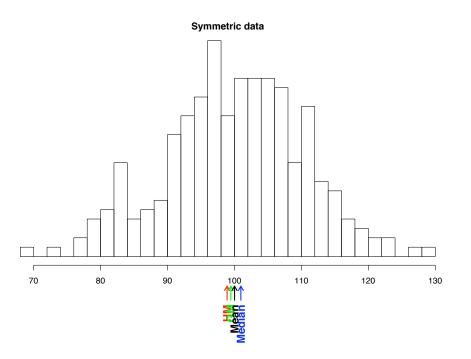
$$harmonic mean = 1/\left\{\frac{1}{n} \sum_{i=1}^{n} (1/x_i)\right\}$$

 \longrightarrow Note: these are all sample means.

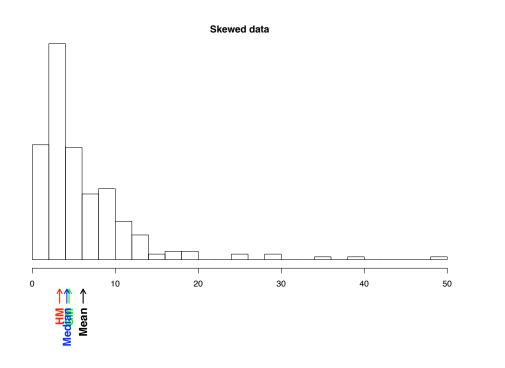
Measures of location / center

- Forget about the mode.
- The mean is sensitive to outliers.
- The median is resistant to outliers.
- The geometric mean is used when a logarithmic transformation is appropriate (for example, when the distribution has a long right tail).
- The harmonic mean may be used when a reciprocal transformation is appropriate (very seldom).

Measures of location / center



Measures of location / center



The different possible measures of the "center" of the distribution are all allowable.

You should consider the following though:

- → Which is the best measure of the "typical" value in your particular setting?
- \longrightarrow Be sure to make clear which "average" you use.

Standard deviation (SD)

Sample variance =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = s^2$$

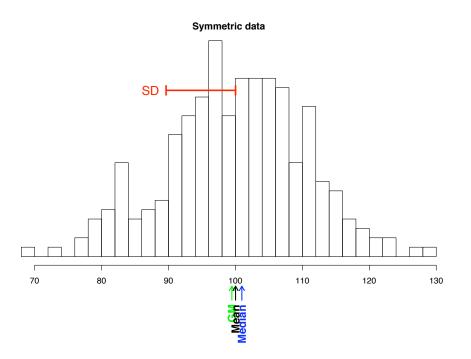
Sample SD

 $= \sqrt{s^2} = s$

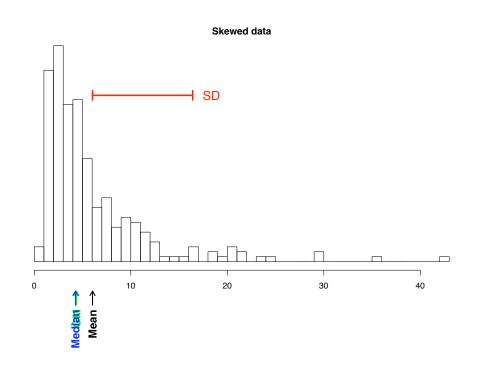
- = RMS (distance from average)
- = "typical" distance from the average
- = sort of like ave $\{|x_i \bar{x}|\}$

$$\longrightarrow$$
 Remember: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

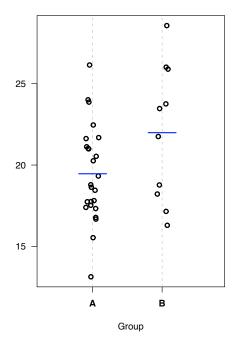
Standard deviation (SD)



Standard deviation (SD)

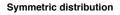


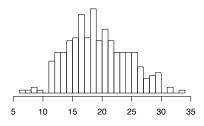
Dotplots

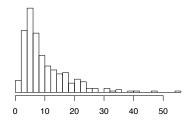


- Few data points per group.
- Possibly many groups.

Histograms

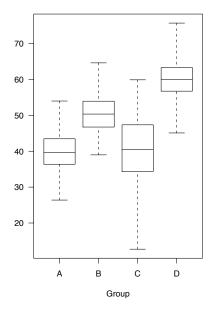






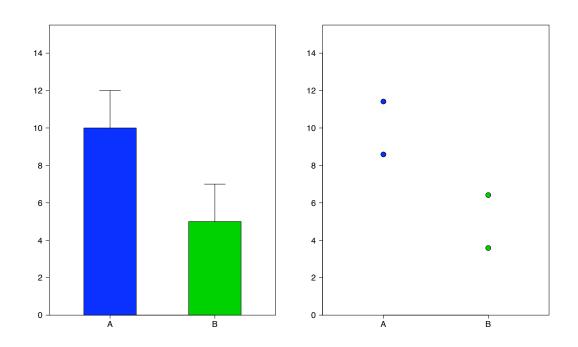
- Many data points per group.
- Few groups.
- Area of the rectangle is proportional to the number of data points in the interval.
- \circ Typically $2\sqrt{n}$ bins is a good choice.

Boxplots

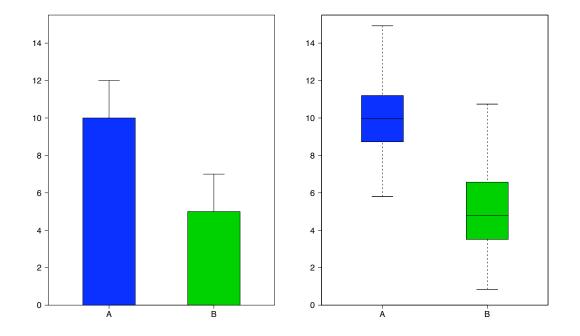


- Many data points.
- Possibly many groups.
- Displays the minimum, lower quartile, median, upper quartile, and the maximum.

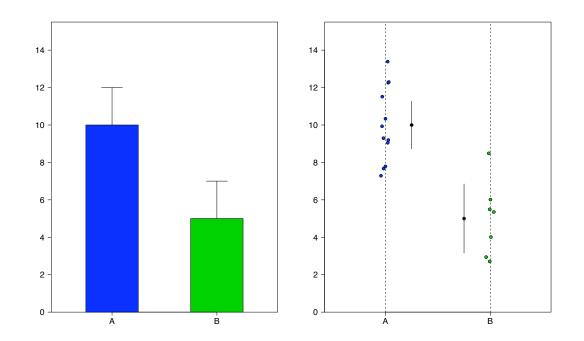
Skyscraper-with-antenna plots



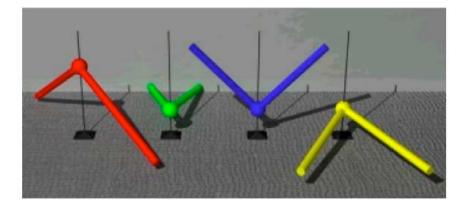
Skyscraper-with-antenna plots



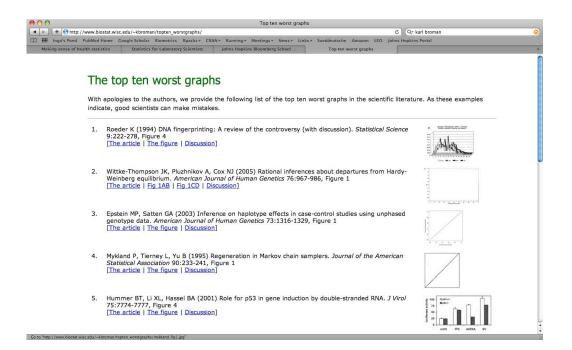
Skyscraper-with-antenna plots



3D graphics



Bad graphs



Displaying data well

• Let the data speak.

Show as much information as possible, taking care not to obscure the message.

Science not sales.

Avoid unnecessary frills, especially gratuitous colors and 3D.

• In tables, every digit should be meaningful.

Don't drop ending 0's!

• Be accurate and clear.

Statistics and Probability

We may at once admit that any inference from the particular to the general must be attended with some degree of uncertainty, but this is not the same as to admit that such inference cannot be absolutely rigorous, for the nature and degree of the uncertainty may itself be capable of rigorous expression.

- Sir R. A. Fisher

What is statistics?

- \longrightarrow Data exploration and analysis.
- \longrightarrow Inductive inference with probability.
- \longrightarrow Quantification of evidence and uncertainty.

A branch of mathematics concerning the study of random processes.

Note: Random does not mean haphazard!

What do I mean when I say the following?

The probability that he is a carrier ...

The chance of rain tomorrow ...

- \longrightarrow Degree of belief.
- \longrightarrow Long term frequency.

The set-up

Experiment

 \rightarrow A well-defined process with an uncertain outcome.

Draw 2 balls with replacement from an urn containing 4 red and 6 blue balls.

Sample space \mathcal{S}

 \rightarrow The set of possible outcomes. { RR, RB, BR, BB }

Event

 \rightarrow A set of outcomes from the sample space (a subset of S). {the first ball is red} = {RR, RB}

Events are said to occur if one of the outcomes they contain occurs. Probabilities are assigned to events.

$0 \leq \Pr(A) \leq 1$	for any event A
$\Pr(\mathcal{S}) = 1$	where ${\cal S}$ is the sample space
Pr(A or B) = Pr(A) + Pr(B)	if A and B are mutually exclusive
Pr(not A) = 1 - Pr(A)	complement rule

Example

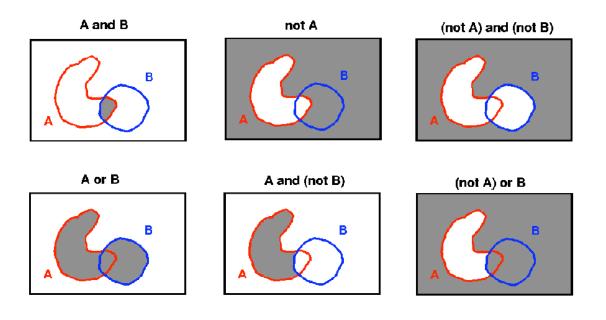
Study with 10 subjects:

- 2 infected with virus X (only)
- 1 infected with virus Y (only)
- 5 infected with both X and Y
- 2 infected with neither

Experiment: Randomly select one subject (each equally likely).

Events:	A = {subject is infected with X}	Pr(A) = 7/10
	B = {subject is infected with Y}	Pr(B) = 6/10
	C = {subject is infected with only X}	Pr(C) = 2/10

Sets

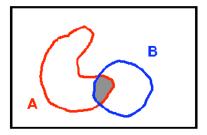


Conditional probability

Pr(A | B) = Probability of A given B = Pr(A and B) / Pr(B)

Example:

[2 w/ X only; 1 w/ Y only; 5 w/ both; 2 w/ neither]



A = {infected with X} B = {infected with Y} Pr(A | B) = (5/10) / (6/10) = 5/6Pr(B | A) = (5/10) / (7/10) = 5/7

More rules and a definition

Multiplication rule:

$$\longrightarrow$$
 Pr(A and B) = Pr(A) \times Pr(B | A)

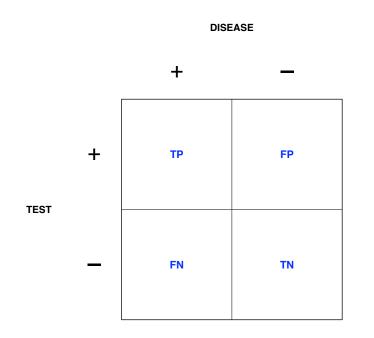
A and B are independent if $Pr(A \text{ and } B) = Pr(A) \times Pr(B)$

If A and B are independent:

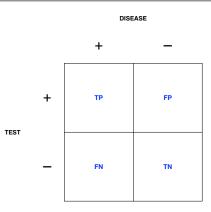
$$\longrightarrow$$
 Pr(A | B) = Pr(A)

 \longrightarrow Pr(B | A) = Pr(B)

Diagnostics



Diagnostics



Sensitivity

Specificity

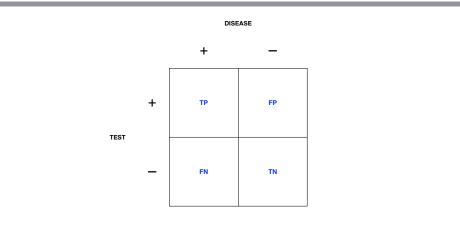
Positive Predictive Value

Negative Predictive Value

Accuracy

- $\rightarrow~$ Pr (positive test \mid disease)
- $\rightarrow~$ Pr (negative test \mid no disease)
- $\rightarrow~$ Pr (disease \mid positive test)
- $\rightarrow~$ Pr (no disease \mid negative test)
- \rightarrow Pr (correct outcome)

Diagnostics



Sensitivity

Specificity

Positive Predictive Value

Negative Predictive Value

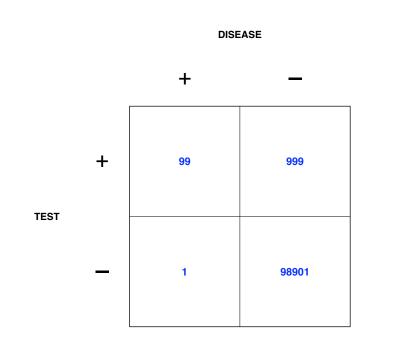
Accuracy

- \rightarrow TP / (TP+FN)
- \rightarrow TN / (FP+TN)
- \rightarrow TP / (TP+FP)
- \rightarrow TN / (FN+TN)
- \rightarrow (TP+TN) / (TP+FP+FN+TN)

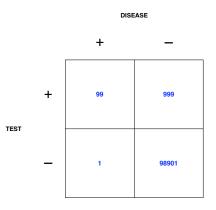
Assume that some disease has a 0.1% prevalence in the population. Assume we have a test kit for that disease that works with 99% sensitivity and 99% specificity. What is the probability of a person having the disease given the test result is positive, if we randomly select a subject from

- \longrightarrow the general population?
- \rightarrow a high risk sub-population with 10% disease prevalence?

Diagnostics



Diagnostics



Sensitivity

Specificity

Positive Predictive Value

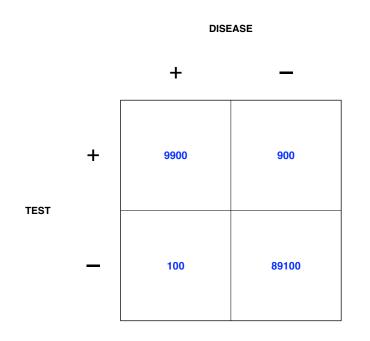
Negative Predictive Value

Accuracy

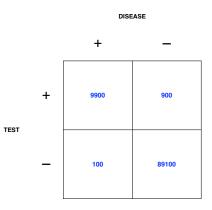
 \rightarrow 99 / (99+1) = 99%

- \rightarrow 98901 / (999+98901) = 99%
- ightarrow 99 / (99+999) pprox 9%
- ightarrow 98901 / (1+98901) > 99.9%
- \rightarrow (99+98901) / 100000 = 99%

Diagnostics



Diagnostics



Sensitivity	ightarrow ~9900 / (9900+100) = 99%
Specificity	→ 89100 / (900+89100) = 99%
Positive Predictive Value	ightarrow ~ 9900 / (9900+900) $pprox$ 92%
Negative Predictive Value	ightarrow ~ 89100 / (100+89100) $pprox$ 99.9%
Accuracy	→ (9900+89100) / 100000 = 99%

Bayes rule

 \longrightarrow Pr(A and B) = Pr(A) \times Pr(B | A) = Pr(B) \times Pr(A | B)

$$\longrightarrow$$
 Pr(A) = Pr(A and B) + Pr(A and not B)

$$= \Pr(B) \times \Pr(A \mid B) + \Pr(\text{not } B) \times \Pr(A \mid \text{not } B)$$

$$\rightarrow$$
 Pr(B) = Pr(B and A) + Pr(B and not A)

= $Pr(A) \times Pr(B \mid A) + Pr(not A) \times Pr(B \mid not A)$

$$\longrightarrow \Pr(A \mid B) = \Pr(A \text{ and } B) / \Pr(B)$$
$$= \Pr(A) \times \Pr(B \mid A) / \Pr(B)$$

Bayes rule

Pr(A | B) =

 $Pr(A) \times Pr(B \mid A) / Pr(B) =$

 $Pr(A) \times Pr(B \mid A) / \{ Pr(A) \times Pr(B \mid A) + Pr(not A) \times Pr(B \mid not A) \}$

Let A denote disease, and B a positive test result!

- \longrightarrow Pr(A | B) is the probability of disease given a positive test result.
- \longrightarrow Pr(A) is the prevalence of the disease.
- \longrightarrow Pr(not A) is 1 minus the prevalence of the disease.
- \longrightarrow Pr(B | A) is the sensitivity of the test.
- \longrightarrow Pr(not B | not A) is the specificity of the test.
- \longrightarrow Pr(B | not A) is 1 minus the specificity of the test.

Random Variables and Distributions

Random variables

Random variable:	A number assigned to each outcome of a random experiment.
Example 1:	<pre>I toss a brick at my neighbor's house. D = distance the brick travels X = 1 if I break a window; 0 otherwise Y = cost of repair T = time until the police arrive N = number of people injured</pre>
Example 2:	Apply a treatment to 10 subjects. X = number of people that respond P = proportion of people that respond

Further examples

Example 3:	Pick a random student in the School.
	S = 1 if female; 0 otherwise H = his/her height W = his/her weight Z = 1 if Canadian citizen; 0 otherwise T = number of teeth he/she has
Example 4:	Sample 20 students from the School H_i = height of student i \overline{H} = mean of the 20 student heights S_H = sample SD of heights T_i = number of teeth of student i \overline{T} = average number of teeth

Random variables are ...

Discrete:	Take values in a countable set (e.g., the positive integers).
	Example: the number of teeth, number of gall stones, number of birds, number of cells responding to a particular antigen, number of heads in 20 tosses of a coin.
Continuous:	Take values in an interval (e.g., [0,1] or the real line).
	Example: height, weight, mass, some measure of gene expression, blood pressure.

Random variables may also be partly discrete and partly continuous (for example, mass of gall stones, concentration of infecting bacteria).

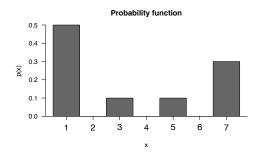
Probability function

Consider a *discrete* random variable, X.

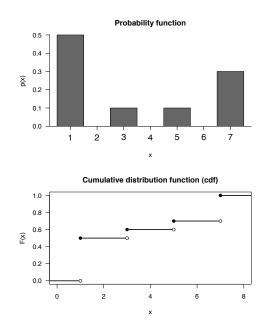
The probability function (or probability distribution, or probability mass function) of X is

$$p(x) = Pr(X = x)$$

Note that $p(x) \ge 0$ for all x and $\sum p(x) = 1$.



х	p(x)
1	0.5
3	0.1
5	0.1
7	0.3



The <mark>cdf</mark> of	X is $F(x) =$	$= \Pr(X \leq \mathbf{x})$
-------------------------	---------------	----------------------------

х	p(x)
1	0.5
3	0.1
5	0.1
7	0.3

Х	F(x)
$(-\infty, 1)$	0
[1,3)	0.5
[3,5)	0.6
[5,7)	0.7
[7,∞)	1.0

Binomial random variable

Prototype:	The number of heads in n independent tosses of a coin, where $Pr(heads) = p$ for each toss. \rightarrow n and p are called <i>parameters</i> .	
	Alternatively, imagine an urn containing red balls and black balls, and suppose that p is the proportion of red balls. Consider the number of red balls in n random draws <i>with replacement</i> from the urn.	
Example 1:	Sample n people at random from a large population, and con- sider the number of people with some property (e.g., that are graduate students or that have exactly 32 teeth).	
Example 2:	Apply a treatment to n subjects and count the number of re- sponders (or non-responders).	
Example 3:	Apply a treatment to 30 groups of 10 subjects. Count the num- ber of groups with at least two responders.	

Binomial distribution

Consider the Binomial(n,p) distribution.

That is, the number of red balls in n draws with replacement from an urn for which the proportion of red balls is p.

 \longrightarrow What is its probability function?

Example: Let $X \sim$ Binomial(n=9,p=0.2).

 \longrightarrow We seek p(x) = Pr(X=x) for x = 0, 1, 2, ..., 9.

 $p(0) = Pr(X=0) = Pr(no red balls) = (1 - p)^n = 0.8^9 \approx 13\%.$

 $p(9) = Pr(X=9) = Pr(all red balls) = p^{n} = 0.2^{9} \approx 5 \times 10^{-7}$

p(1) = Pr(X=1) = Pr(exactly one red ball) = ...?

Binomial distribution

p(1) = Pr(X=1) = Pr(exactly one red ball) = Pr(RBBBBBBBB or BRBBBBBB or ... or BBBBBBBBR) = Pr(RBBBBBBBB) + Pr(BRBBBBBBB) + Pr(BBBBBBBB) + Pr(BBBBBBBBB) + Pr(BBBBBBBBB) + Pr(BBBBBBBBB) + Pr(BBBBBBBBBB) + Pr(BBBBBBBBBB) + Pr(BBBBBBBBBB) $= p(1-p)^{8} + p(1-p)^{8} + ... p(1-p)^{8} = 9p(1-p)^{8} \approx 30\%.$

How about p(2) = Pr(X=2)?

How many outcomes have 2 red balls among the 9 balls drawn?

 \longrightarrow This is a problem of combinatorics. That is, counting!

Getting at Pr(X= 2)

How many are there?

 $9 \times 8 / 2 = 36.$

The binomial coefficient

The number of possible samples of size ${\sf k}$ selected from a population of size ${\sf n}$:

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

For a Binomial(n,p) random variable:

$$\Pr(X=k) = \binom{n}{k} p^{k} (1-p)^{(n-k)}$$

Suppose Pr(subject responds to treatment) = 90%, and we apply the treatment to 10 random subjects.

Pr(exactly 7 subjects respond) =
$$\binom{10}{7} \times (0.9)^7 \times (0.1)^3$$

= $\frac{10 \times 9 \times 8}{3 \times 2} \times (0.9)^7 \times (0.1)^3$
= $120 \times (0.9)^7 \times (0.1)^3$
 $\approx 5\%$
Pr(fewer than 9 respond) = $1 - p(9) - p(10)$
= $1 - 10 \times (0.9)^9 \times (0.1) - (0.9)^{10}$
 $\approx 26\%$

The world is entropy driven

Assume we are flipping a fair coin (independently) ten times. Let X be the random variable that describes the number of heads H in the experiment.

 $Pr(TTTTTTTTTT) = Pr(HTTHHHTHTH) = (1/2)^{10}$

- \longrightarrow There is only one possible outcome with zero heads.
- \longrightarrow There are 210 possibilities for outcomes with six heads.

Thus,

- \longrightarrow Pr(X = 0) = (1/2)^{10} $\approx 0.1\%$.
- → $\Pr(X = 6) = 210 \times (1/2)^{10} \approx 20.5\%$.

The world is entropy driven

Assume that in a lottery, six out of the numbers 1 through 49 are randomly selected as the winning numbers.

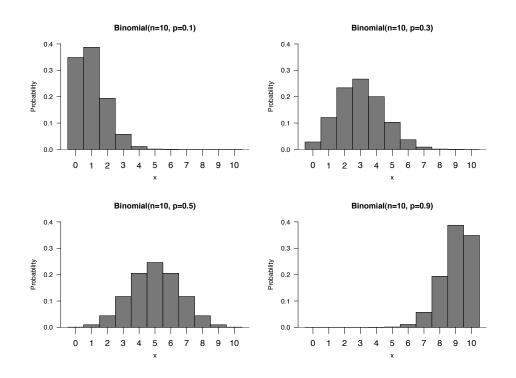
→ There are 13,983,816 possible combinations for the winning numbers.

Hence $Pr(\{1,2,3,4,5,6\}) = Pr(\{8,23,24,34,42,45\}) = 1/13983816$

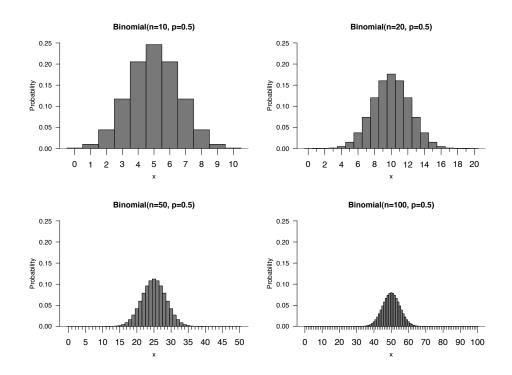
The probability of the having six consecutive numbers as the winning numbers is

 $\Pr(\{1,2,3,4,5,6\}) + \cdots + \Pr(\{44,45,46,47,48,49\})$

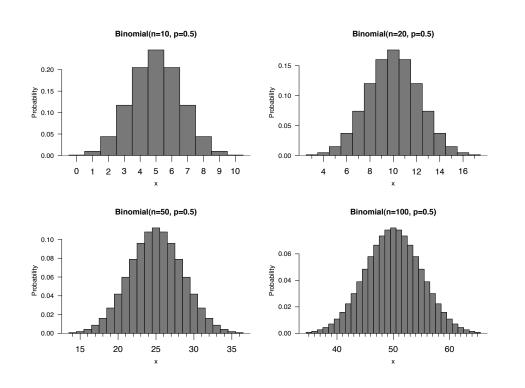
= $44 \times (1/13983816) \approx 0.0003\%$.



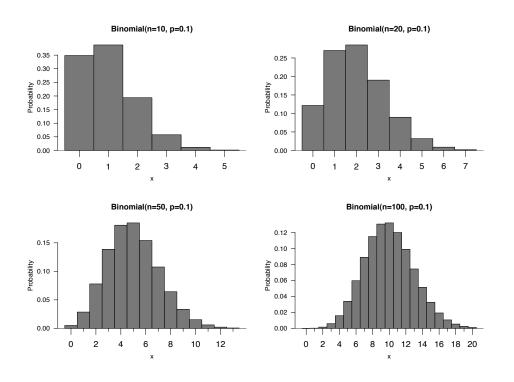
Binomial distributions



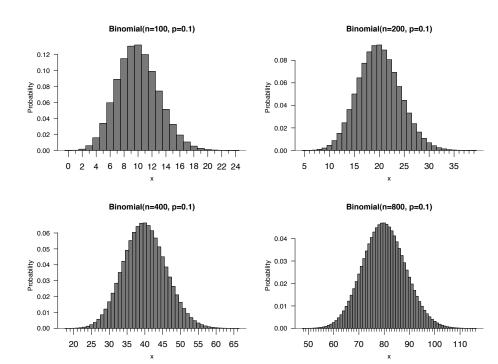
Binomial distributions



Binomial distributions



Binomial distributions



Expected value and standard deviation

 \longrightarrow The expected value (or mean) of a discrete random variable *X* with probability function p(x) is

$$\mu = \mathsf{E}(X) = \sum_{\mathsf{x}} \mathsf{x} \mathsf{p}(\mathsf{x})$$

 \longrightarrow The variance of a discrete random variable X with probability function p(x) is

$$\sigma^2 = \operatorname{var}(X) = \sum_{\mathbf{x}} (\mathbf{x} - \mu)^2 \, \mathbf{p}(\mathbf{x})$$

 \longrightarrow The standard deviation (SD) of X is

$$SD(X) = \sqrt{var(X)}$$

Mean and SD of binomial RVs

If $X \sim$ Binomial(n,p), then

$$E(X) = n p$$
$$SD(X) = \sqrt{n p (1 - p)}$$

 \rightarrow Examples:

n	р	mean	SD
10	10%	1	0.9
10	30%	3	1.4
10	50%	5	1.6
10	90%	9	0.9

Binomial random variable

Number of successes in n trials where:

- → Trials independent
- \rightarrow p = Pr(success) is constant

The number of successes in n trials does not necessarily follow a binomial distribution!

Deviations from the binomial:

- \longrightarrow Varying p
- → Clumping or repulsion (non-independence)

Examples

Suppose treatment response differs between genders:

Pr(responds | male) = 10% but Pr(responds | female) = 80%.

 \longrightarrow Pick 4 male and 6 female subjects.

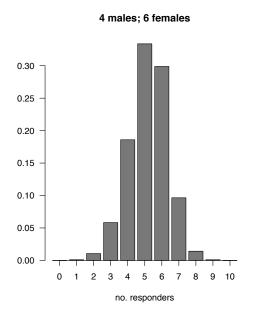
The number of responders is not binomial.

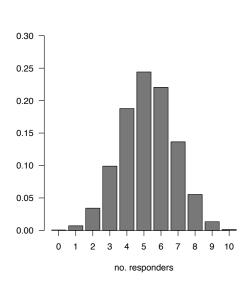
→ Pick 10 random subjects (with Pr(subject is male) = 40%).
 The number of responders is binomial.

 $p = 0.4 \times 0.1 + 0.6 \times 0.8 = 0.52.$

$$\label{eq:pressure} \begin{split} & \mathsf{Pr}(\mathsf{responds}) = \\ & \mathsf{Pr}(\mathsf{responds} \text{ and } \mathsf{male}) + \mathsf{Pr}(\mathsf{responds} \text{ and } \mathsf{female}) = \\ & \mathsf{Pr}(\mathsf{male}) \times \mathsf{Pr}(\mathsf{responds} \mid \mathsf{male}) + \mathsf{Pr}(\mathsf{female}) \times \mathsf{Pr}(\mathsf{responds} \mid \mathsf{female}) \end{split}$$

Examples





Random subjects (40% males)

Poisson distribution

Consider a Binomial(n,p) where

- \longrightarrow n is really large
- \longrightarrow p is really small

For example, suppose each well in a microtiter plate contains 50,000 T cells, and that 1/100,000 cells respond to a particular antigen.

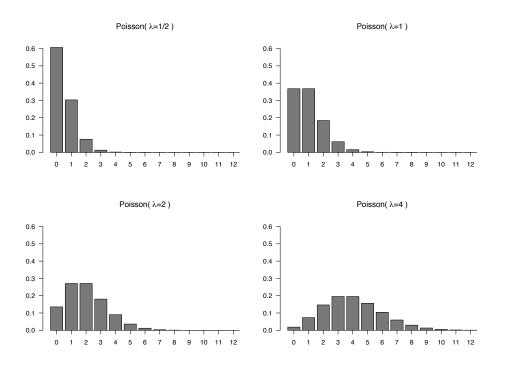
Let X be the number of responding cells in a well.

 \longrightarrow In this case, X follows a Poisson distribution approximately.

Let $\lambda = n p = E(X)$. $\longrightarrow p(x) = Pr(X = x) = e^{-\lambda} \lambda^{x} / x!$

Note that SD(X) = $\sqrt{\lambda}$.

Poisson distribution



Example

Suppose there are 100,000 T cells in each well of a microtiter plate. Suppose that 1/80,000 T cells respond to a particular antigen.

Let X = number of responding T cells in a well.

- \longrightarrow *X* ~ Poisson(λ = 1.25).
- \longrightarrow E(X) = 1.25
- \longrightarrow SD(X) = $\sqrt{1.25} \approx 1.12$.

 $Pr(X = 0) = exp(-1.25) \approx 29\%.$ $Pr(X > 0) = 1 - exp(-1.25) \approx 71\%.$ $Pr(X = 2) = exp(-1.25) \times (1.25)^2 / 2 \approx 22\%.$

Y = a + b X

Suppose X is a discrete random variable with probability function p, so that p(x) = Pr(X = x).

- \longrightarrow Expected value: $E(X) = \sum_{x} x p(x)$
- \longrightarrow Standard deviation: SD(X) = $\sqrt{\sum_{x} [x E(X)]^2 p(x)}$

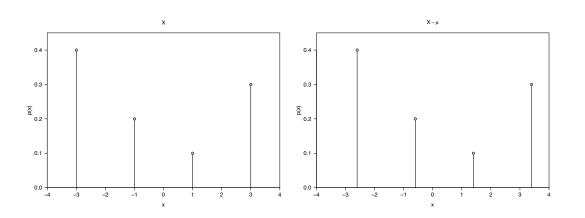
Let Y = a + b X where a and b are numbers. Then Y is a random variable (like X), and

$$\longrightarrow$$
 E(Y) = a + b E(X)

$$\longrightarrow SD(Y) = |b| SD(X)$$

In particular, if $\mu = E(X)$, $\sigma = SD(X)$, and $Z = (X - \mu) / \sigma$, then

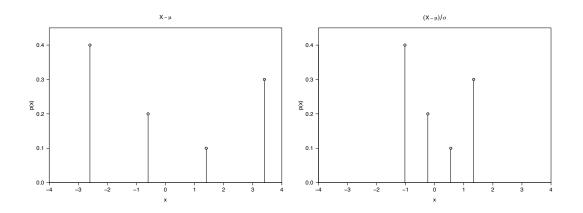
Y = a + b X



Let *X* be a random variable with mean μ and SD σ .

If $Y = X - \mu$, then

 Y = a + b X



Let X be a random variable with mean μ and SD σ .

If
$$Y = (X - \mu) / \sigma$$
, then

Example

Suppose $X \sim \text{Binomial}(n,p) \rightarrow \text{number of successes}$

 $\longrightarrow E(X) = n p$

$$\longrightarrow$$
 SD(X) = $\sqrt{n p (1-p)}$

Let $P = X / n \rightarrow proportion of successes$

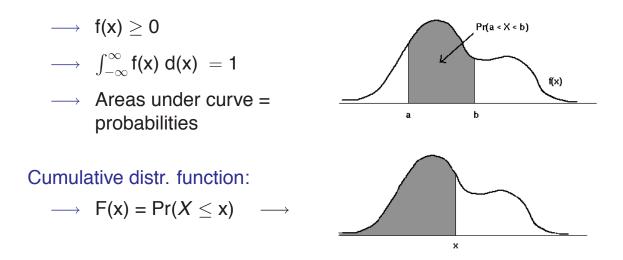
$$\longrightarrow$$
 E(P) = E(X / n) = E(X) / n = p

$$\longrightarrow$$
 SD(P) = SD(X / n) = SD(X) / n = $\sqrt{p(1-p)/n}$

Continuous random variables

Suppose *X* is a continuous random variable.

Instead of a probability function, X has a probability density function (pdf), sometimes called just the density of X.



Means and standard deviations

Expected value:

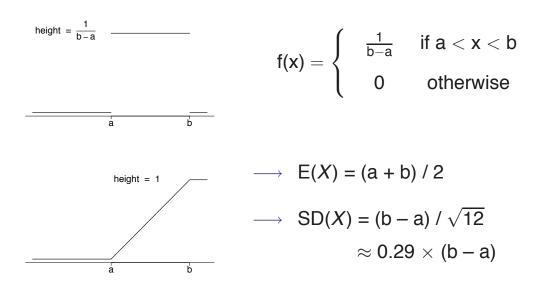
- \longrightarrow Discrete RV: E(X) = $\sum_{x} x p(x)$
- \longrightarrow Continuous RV: E(X) = $\int_{-\infty}^{\infty} x f(x) dx$

Standard deviation:

- \longrightarrow Discrete RV: SD(X) = $\sqrt{\sum_{x} [x E(X)]^2 p(x)}$
- \longrightarrow Continuous RV: SD(X) = $\sqrt{\int_{-\infty}^{\infty} [x E(X)]^2 f(x) dx}$

 $X \sim \text{Uniform}(a, b)$

 \longrightarrow Draw a number at random from the interval (a, b).



Normal distribution

By far the most important distribution:

The normal distribution (also called the Gaussian distribution).

If $X \sim N(\mu, \sigma)$, then the pdf of X is

$$f(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$$

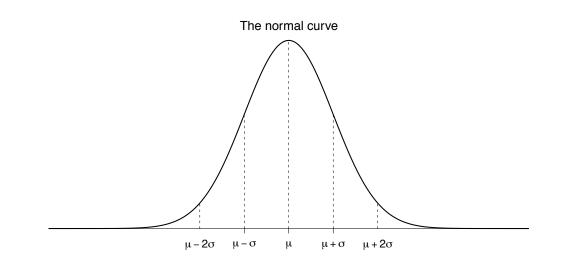
Note: $E(X) = \mu$ and $SD(X) = \sigma$.

Of great importance:

 \longrightarrow If $X \sim N(\mu, \sigma)$ and $Z = (X - \mu) / \sigma$, then $Z \sim N(0, 1)$.

This is the standard normal distribution.

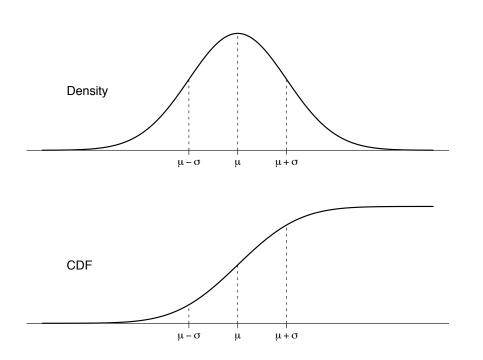
Normal distribution



 \rightarrow Remember:

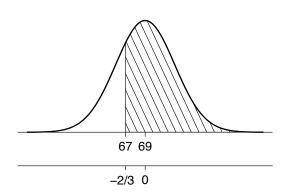
 $\Pr(\mu - \sigma \le X \le \mu + \sigma) \approx 68\%$ and $\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95\%$.

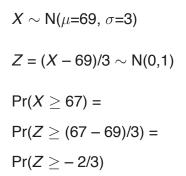
The normal CDF



Suppose the heights of adult males in the U.S. are approximately normal distributed, with mean = 69 in and SD = 3 in.

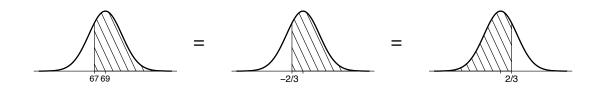
 \longrightarrow What proportion of men are taller than 5'7"?





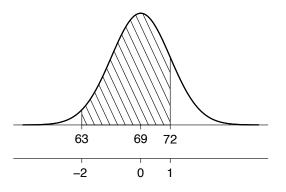
Example

Use either of the following three:



The answer: 75%.

 \longrightarrow What proportion of men are between 5'3" and 6'?



 $\Pr(63 \le X \le 72) = \Pr(-2 \le Z \le 1) \longrightarrow 82\%.$