
Multiple random variables

Multiple random variables

We essentially always consider multiple random variables at once.

−→ The key concepts: Joint, conditional and marginal distri-

butions, and independence of RVs.

Let X and Y be discrete random variables.

−→ Joint distribution:

pXY(x,y) = Pr(X = x and Y = y)

−→ Marginal distributions:

pX(x) = Pr(X = x) =
∑

y pXY(x,y)

pY(y) = Pr(Y = y) =
∑

x pXY(x,y)

−→ Conditional distributions:

pX|Y=y(x) = Pr(X = x | Y = y) = pXY(x,y) / pY(y)



Example

Sample a couple who are both carriers of some disease gene.

X = number of children they have

Y = number of affected children they have

x

pXY(x,y) 0 1 2 3 4 5 pY(y)

0 0.160 0.248 0.124 0.063 0.025 0.014 0.634

1 0 0.082 0.082 0.063 0.034 0.024 0.285

y 2 0 0 0.014 0.021 0.017 0.016 0.068

3 0 0 0 0.003 0.004 0.005 0.012

4 0 0 0 0 0.000 0.001 0.001

5 0 0 0 0 0 0.000 0.000

pX(x) 0.160 0.330 0.220 0.150 0.080 0.060

Pr( Y = y | X = 2 )

x

pXY(x,y) 0 1 2 3 4 5 pY(y)

0 0.160 0.248 0.124 0.063 0.025 0.014 0.634

1 0 0.082 0.082 0.063 0.034 0.024 0.285

y 2 0 0 0.014 0.021 0.017 0.016 0.068

3 0 0 0 0.003 0.004 0.005 0.012

4 0 0 0 0 0.000 0.001 0.001

5 0 0 0 0 0 0.000 0.000

pX(x) 0.160 0.330 0.220 0.150 0.080 0.060

y 0 1 2 3 4 5

Pr( Y=y | X=2 ) 0.564 0.373 0.064 0.000 0.000 0.000



Pr( X = x | Y = 1 )

x

pXY(x,y) 0 1 2 3 4 5 pY(y)

0 0.160 0.248 0.124 0.063 0.025 0.014 0.634

1 0 0.082 0.082 0.063 0.034 0.024 0.285

y 2 0 0 0.014 0.021 0.017 0.016 0.068

3 0 0 0 0.003 0.004 0.005 0.012

4 0 0 0 0 0.000 0.001 0.001

5 0 0 0 0 0 0.000 0.000

pX(x) 0.160 0.330 0.220 0.150 0.080 0.060

x 0 1 2 3 4 5

Pr( X=x | Y=1 ) 0.000 0.288 0.288 0.221 0.119 0.084

Independence

Random variables X and Y are independent if

−→ pXY(x,y) = pX(x) pY(y)

for every pair x,y.

In other words/symbols:

−→ Pr(X = x and Y = y) = Pr(X = x) Pr(Y = y)

for every pair x,y.

Equivalently,

−→ Pr(X = x | Y = y) = Pr(X = x)

for all x,y.



Example

Sample a subject from some high-risk population.

X = 1 if the subject is infected with virus A, and = 0 otherwise

Y = 1 if the subject is infected with virus B, and = 0 otherwise

x

pXY(x,y) 0 1 pY(y)

y 0 0.72 0.18 0.90

1 0.08 0.02 0.10

pX(x) 0.80 0.20

Continuous random variables

Continuous random variables have joint densities, fXY(x,y).

−→ The marginal densities are obtained by integration:

fX(x) =

∫

fXY(x, y) dy and fY(y) =

∫

fXY(x, y) dx

−→ Conditional density:

fX|Y=y(x) = fXY(x, y)/fY(y)

−→ X and Y are independent if:

fXY(x,y) = fX(x) fY(y) for all x,y.



The bivariate normal distribution
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IID

More jargon:

Random variables X 1, X 2, X 3, . . . , Xn are said to be independent

and identically distributed (iid) if

−→ they are independent,

−→ they all have the same distribution.

Usually such RVs are generated by

−→ repeated independent measurements, or

−→ random sampling from a large population.

Means and SDs

−→ Mean and SD of sums of random variables:

E(
∑

i X i) =
∑

i E(Xi) no matter what

SD(
∑

i X i) =
√

∑

i{SD(Xi)}2 if the Xi are independent

−→ Mean and SD of means of random variables:

E(
∑

i X i / n) =
∑

i E(Xi)/n no matter what

SD(
∑

i X i/n) =
√

∑

i{SD(Xi)}2/n if the Xi are independent

−→ If the Xi are iid with mean µ and SD σ:

E(
∑

i X i / n) = µ and SD(
∑

i X i / n) = σ/
√
n



Example
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Sampling distributions



Populations and samples

−→ We are interested in the distribution of measurements in

an underlying (possibly hypothetical) population.

Examples: ◦ Infinite number of mice from strain A; cytokine response to treat-

ment.

◦ All T cells in a person; respond or not to an antigen.

◦ All possible samples from the Baltimore water supply; concen-

tration of cryptospiridium.

◦ All possible samples of a particular type of cancer tissue; ex-
pression of a certain gene.

−→ We can’t see the entire population (whether it is real or hy-

pothetical), but we can see a random sample of the popu-

lation (perhaps a set of independent, replicated measure-

ments).

Parameters

We are interested in the population distribution or, in particular,

certain numerical attributes of the population distribution, called

parameters.

0 10 20 30 40 50 60

µ

!

Population distribution
−→ Examples:

◦mean
◦median
◦ SD
◦ proportion = 1
◦ proportion > 40

◦ geometric mean
◦ 95th percentile

Parameters are usually assigned greek letters (like θ, µ, and σ).



Sample data

We make n independent measurements (or draw a random sam-

ple of size n ). This gives X 1, X 2, . . . , Xn independent and identi-

cally distributed (iid), following the population distribution.

−→ Statistic:

A numerical summary (function) of the X ’s. For example, the

sample mean, sample SD, etc.

−→ Estimator:

A statistic, viewed as estimating some population parameter.

We write:

X = µ̂ as an estimator of µ, S = σ̂ as an estimator of σ, p̂ as an
estimator of p, θ̂ as an estimator of θ, . . .

Parameters, estimators, estimates

µ • The population mean
• A parameter
• A fixed quantity
• Unknown, but what we want to know

X • The sample mean
• An estimator of µ
• A function of the data (the X ’s)
• A random quantity

x • The observed sample mean
• An estimate of µ
• A particular realization of the estimator, X
• A fixed quantity, but the result of a random process.



Estimators are random variables

Estimators have distributions, means, SDs, etc.

0 10 20 30 40 50 60

µ

!

Population distribution

−→ X 1, X 2, . . . , X 10 −→ X

3.8 8.0 9.9 13.1 15.5 16.6 22.3 25.4 31.0 40.0 −→ 18.6

6.0 10.6 13.8 17.1 20.2 22.5 22.9 28.6 33.1 36.7 −→ 21.2

8.1 9.0 9.5 12.2 13.3 20.5 20.8 30.3 31.6 34.6 −→ 19.0

4.2 10.3 11.0 13.9 16.5 18.2 18.9 20.4 28.4 34.4 −→ 17.6

8.4 15.2 17.1 17.2 21.2 23.0 26.7 28.2 32.8 38.0 −→ 22.8

Sampling distribution
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Population distribution

The sampling distribution depends on:

• The type of statistic

• The population distribution

• The sample size

Distribution of X

5 10 15 20 25 30 35 40

n = 5

5 10 15 20 25 30 35 40

n = 10

5 10 15 20 25 30 35 40

n = 25

5 10 15 20 25 30 35 40

n = 100



Bias, SE, RMSE
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µ

!

Population distribution

0 5 10 15 20

Dist’n of sample SD (n=10)

Consider θ̂, an estimator of the parameter θ.

−→ Bias: E(θ̂ − θ) = E(θ̂) − θ.

−→ Standard error (SE): SE(θ̂) = SD(θ̂).

−→ RMS error (RMSE):

√

E{(θ̂ − θ)2} =
√

(bias)2 + (SE)2.

The sample mean

0 10 20 30 40 50 60

µ

!

Population distribution Assume X 1, X 2, . . . , X n are iid

with mean µ and SD σ.

−→ Mean of X = E(X ) = µ.

−→ Bias = E(X ) – µ = 0.

−→ SE of X = SD(X ) = σ/
√
n.

−→ RMS error of X :
√

(bias)2 + (SE)2 = σ/
√
n.



If the population is normally distributed

If X 1, X 2, . . . , X n are iid

Normal(µ,σ), then

−→ X ∼ Normal(µ,σ/
√
n).

Population distribution

µ

!

Distribution of X

µ

! n

Example

Suppose X 1, X 2, . . . , X 10 are iid Normal(mean=10,SD=4)

Then X ∼ Normal(mean=10, SD ≈ 1.26). Let Z = (X – 10)/1.26.

Pr(X > 12)?

10 12

1.26 ≈
0!1.58 

1 ≈ 5.7%

Pr(9.5 < X < 10.5)?

9.5  
10
  10.5

≈
!0.40    

0
    0.40

≈ 31%

Pr(|X − 10| > 1)?

9 10 11

≈
!0.80    0  0.80

≈ 43%



Central limit theorm

−→ If X 1, X 2, . . . , X n are iid with mean µ and SD σ, and the
sample size (n) is large, then

X is approximately Normal(µ, σ/
√
n).

−→ How large is large?

It depends on the population distribution.

(But, generally, not too large.)

Example 1
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µ
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Population distribution
Distribution of X
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n = 100



Example 2

0 50 100 150 200µ

!

Population distribution

Distribution of X

0 50 100 150 200

n = 10

0 50 100 150 200

n = 25

0 50 100 150 200

n = 100

0 50 100 150 200

n = 500

Example 2 (rescaled)

0 50 100 150 200µ

!

Population distribution

Distribution of X

50 100 150

n = 10

20 40 60 80 100 120

n = 25

20 30 40 50 60

n = 100

30 35 40

n = 500



Example 3

0 1

Population distribution

{X i} iid

Pr(X i = 0) = 90%

Pr(X i = 1) = 10%

E(X i) = 0.1; SD(X i) = 0.3

∑

X i ∼ Binomial(n, p)

→ X = proportion of 1’s

Distribution of X
n = 10

0 0.1 0.2 0.3 0.4 0.5

n = 25

0 0.05 0.1 0.15 0.2 0.25 0.3

n = 100

0 0.05 0.1 0.15 0.2

n = 500

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

The sample SD

−→ Why use (n – 1) in the sample SD?

S =

√

∑

(Xi − X)2

n− 1

−→ If {X i} are iid with mean µ and SD σ, then

◦ E(S2) = σ2

◦ E{ n – 1
n

S2 } = n – 1
n

σ2 < σ2

−→ In other words:

◦ Bias(S2) = 0
◦ Bias ( n – 1

n
S2 ) = n – 1

n
σ2 − σ2 = – 1

n
σ2



The distribution of the sample SD

−→ If X 1, X 2, . . . , X n are iid Normal(µ, σ), then the sample SD
S satisfies

(n – 1) S2/σ2 ∼ χ2
n – 1

(When the Xi are not normally distributed, this is not true.)

"
2
 distributions

0 10 20 30 40 50

df=9

df=19

df=29

Example

0 5 10 15 20 25 30

n=25

n=10
n=5

n=3

!

Distribution of sample SD

(based on normal data)



A non-normal example
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µ
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Population distribution
Distribution of sample SD

0 5 10 15 20 25 30

n = 3

0 5 10 15 20 25 30

n = 5

0 5 10 15 20 25 30

n = 10

0 5 10 15 20 25 30

n = 25

Inference about one group



Review

−→ If X 1, . . . ,X n have mean µ and SD σ, then

E(X ) = µ no matter what

SD(X ) = σ/
√
n if the X ’s are independent

−→ If X 1, . . . ,X n are iid Normal(mean=µ, SD=σ), then

X ∼ Normal(mean = µ,SD = σ/
√
n).

−→ If X 1, . . . ,X n are iid with mean µ and SD σ and the sample

size n is large, then

X ∼ Normal(mean = µ,SD = σ/
√
n).

Confidence intervals

Suppose we measure some response in 100 male subjects, and

find that the sample average (x̄) is 3.52 and sample SD (s) is 1.61.

Our estimate of the SE of the sample mean is 1.61/
√
100 = 0.161.

A 95% confidence interval for the population mean (µ) is roughly

3.52± (2× 0.16) = 3.52± 0.32 = (3.20, 3.84).

What does this mean?



Confidence intervals

Suppose that X 1, . . . ,X n are iid Normal(mean=µ, SD=σ).
Suppose that we actually know σ.

Then X̄ ∼ Normal(mean=µ, SD=σ/
√
n) σ is known but µ is not!

−→ How close is X to µ?

Pr

(

|X − µ|
σ/

√
n

≤ 1.96

)

= 95%

Pr

(

−1.96σ√
n

≤ X − µ ≤
1.96 σ√

n

)

= 95%

µ

! n

Pr

(

X −
1.96 σ√

n
≤ µ ≤ X +

1.96σ√
n

)

= 95%

What is a confidence interval?

A 95% confidence interval is an interval calculated from the data

that in advance has a 95% chance of covering the population pa-

rameter.

In advance, X ± 1.96σ/
√
n has a 95% chance of covering µ.

Thus, it is called a 95% confidence interval for µ.

Note that, after the data is gathered (for instance, n=100, x̄ = 3.52,

σ = 1.61), the interval becomes fixed:

x̄ ± 1.96σ/
√
n = 3.52 ± 0.32.

We can’t say that there’s a 95% chance that µ is in the interval

3.52 ± 0.32. It either is or it isn’t; we just don’t know.



What is a confidence interval?

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

500 confidence intervals for µ
(! known)

Longer and shorter intervals

−→ If we use 1.64 in place of 1.96, we get shorter intervals with

lower confidence.

Since Pr

(

|X − µ|
σ/

√
n

≤ 1.64

)

= 90%,

X ± 1.64σ/
√
n is a 90% confidence interval for µ.

−→ If we use 2.58 in place of 1.96, we get longer intervals with

higher confidence.

Since Pr

(

|X − µ|
σ/

√
n

≤ 2.58

)

= 99%,

X ± 2.58σ/
√
n is a 99% confidence interval for µ.



What is a confidence interval? (cont)

A 95% confidence interval is obtained from a procedure for pro-

ducing an interval, based on data, that 95% of the time will pro-

duce an interval covering the population parameter.

In advance, there’s a 95% chance that the interval will cover the

population parameter.

After the data has been collected, the confidence interval either

contains the parameter or it doesn’t.

Thus we talk about confidence rather than probability.

But we don’t know the SD

Use of X ± 1.96σ/
√
n as a 95% confidence interval for µ requires

knowledge of σ.

That the above is a 95% confidence interval for µ is a result of the
following:

X − µ

σ/
√
n
∼ Normal(0,1)

What if we don’t know σ?

−→ We plug in the sample SD S, but then we need to widen the

intervals to account for the uncertainty in S.



What is a confidence interval? (cont)

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

500 BAD confidence intervals for µ
(! unknown)

What is a confidence interval? (cont)

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

500 confidence intervals for µ
(! unknown)



The Student t distribution

If X 1,X 2, . . .X n are iid Normal(mean=µ, SD=σ), then

X − µ

S/
√
n
∼ t(df = n – 1)

Discovered by William Gossett

(“Student”) who worked for Guinness.

In R, use the functions pt(), qt(),

and dt().

−→ qt(0.975,9) returns 2.26

(compare to 1.96)

−→ pt(1.96,9)-pt(-1.96,9)

returns 0.918 (compare to

0.95)

!4 !2 0 2 4

df=2

df=4

df=14
normal

The t interval

If X 1, . . . ,X n are iid Normal(mean=µ, SD=σ), then

X ± t(α/2,n− 1) S/
√
n

is a 1− α confidence interval for µ.

−→ t(α/2,n − 1) is the 1 − α/2 quantile of the t distribution with
n− 1 “degrees of freedom.”

!4 !2 0 2 4
t(# 2, n $ 1)

# 2

In R: qt(0.975,9) for the case n=10, α=5%.



Example 1

Suppose we have measured some response in 10 male subjects,

and obtained the following numbers:

Data

0.2 1.3 1.4 2.3 4.2

4.7 4.7 5.1 5.9 7.0

x̄ = 3.68

s = 2.24

n = 10

qt(0.975,9) = 2.26

−→ 95% confidence interval for µ (the population mean):

3.68 ± 2.26 × 2.24 /
√
10 ≈ 3.68 ± 1.60 = (2.1, 5.3)

0 1 2 3 4 5 6 7

  95% CI

  s

Example 2

Suppose we have measured (by RT-PCR) the log10 expression of

a gene in 3 tissue samples, and obtained the following numbers:

Data

1.17 6.35 7.76 x̄ = 5.09

s = 3.47

n = 3

qt(0.975,2) = 4.30

−→ 95% confidence interval for µ (the population mean):

5.09 ± 4.30 × 3.47 /
√
3 ≈ 5.09 ± 8.62 = (–3.5, 13.7)

0 5 10

  95% CI

  s



Example 3

Suppose we have weighed the mass of tumor in 20 mice, and

obtained the following numbers

Data

34.9 28.5 34.3 38.4 29.6

28.2 25.3 . . . . . . 32.1

x̄ = 30.7

s = 6.06

n = 20

qt(0.975,19) = 2.09

−→ 95% confidence interval for µ (the population mean):

30.7 ± 2.09 × 6.06 /
√
20 ≈ 30.7 ± 2.84 = (27.9, 33.5)

20 25 30 35 40

  95% CI

  s

Confidence interval for the mean

µ

!

Population distribution

0 z# 2

Z = (X $ µ) (! n)

µ

! n

Distribution of X

0 t# 2

t = (X $ µ) (S n)

X 1,X 2, . . . ,X n independent Normal(µ, σ).

95% confidence interval for µ:

X ± t S/
√
n where t = 97.5 percentile of t distribution with (n – 1) d.f.



Confidence interval for the population SD

Suppose we observe X 1,X 2, . . . ,X n iid Normal(µ, σ).

Suppose we wish to create a 95% CI for the population SD, σ.

Our estimate of σ is the sample SD, S.

The sampling distribution of S is such that

(n− 1)S2

σ2
∼ χ2(df = n− 1)

0 5 10 15 20 25 30

df = 4

df = 9

df = 19

Confidence interval for the population SD

Choose L and U such that

Pr
(

L ≤ (n−1)S2

σ2 ≤ U
)

= 95%.

0 L U

Pr
(

1
U
≤ σ2

(n−1)S2 ≤ 1
L

)

= 95%.

Pr
(

(n−1)S2

U
≤ σ2 ≤ (n−1)S2

L

)

= 95%.

Pr

(

S
√

n−1
U

≤ σ ≤ S
√

n−1
L

)

= 95%.

−→
(

S
√

n−1
U

, S
√

n−1
L

)

is a 95% CI for σ.



Example

Population A: n = 10; sample SD: sA = 7.64

L = qchisq(0.025,9) = 2.70

U = qchisq(0.975,9) = 19.0

−→ 95% CI for σA:

(7.64 ×
√

9
19.0

, 7.64 ×
√

9
2.70

) = (7.64 × 0.69, 7.64 × 1.83) = (5.3, 14.0)

Population B: n = 16; sample SD: sB = 18.1

L = qchisq(0.025,15) = 6.25

U = qchisq(0.975,15) = 27.5

−→ 95% CI for σB:

(18.1 ×
√

15
27.5

, 18.1 ×
√

15
6.25

) = (18.1 × 0.74, 18.1 × 1.55) = (13.4, 28.1)

Tests of hypotheses

Confidence interval: Form an interval (on the basis of data)

of plausible values for a population pa-

rameter.

Test of hypothesis: Answer a yes or no question regarding

a population parameter.

Examples:

−→ Do the two strains have the same average response?

−→ Is the concentration of substance X in the water supply

above the safe limit?

−→ Does the treatment have an effect?



Example

We have a quantitative assay for the concentration of antibodies

against a certain virus in blood from a mouse.

We apply our assay to a set of ten mice before and after the injec-

tion of a vaccine. (This is called a “paired” experiment.)

Let X i denote the differences between the measurements (“after”

minus “before”) for mouse i.

We imagine that the X i are independent and identically distributed

Normal(µ, σ).

−→ Does the vaccine have an effect? In other words: Is µ )= 0?

The data
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Hypothesis testing

We consider two hypotheses:

Null hypothesis, H0: µ = 0 Alternative hypothesis, Ha: µ )= 0

Type I error: Reject H0 when it is true (false positive)

Type II error: Fail to reject H0 when it is false (false negative)

We set things up so that a Type I error is a worse error (and so

that we are seeking to prove the alternative hypothesis). We want

to control the rate (the significance level, α) of such errors.

−→ Test statistic: T = (X − 0)/(S/
√
10)

−→ We reject H0 if |T| > t%, where t% is chosen so that

Pr(Reject H0 | H0 is true) = Pr(|T| > t% | µ = 0) = α.
(generally α = 5%)

Example (continued)

Under H0 (i.e., when µ = 0),

T = (X − 0)/(S/
√
10) ∼ t(df = 9)

We reject H0 if |T| > 2.26.

t(df=9) distribution

2.26!2.26  

2.5% 2.5%

As a result, if H0 is true, there’s a 5% chance that you’ll reject it!

For the observed data:

x̄ = 1.93, s = 2.24, n = 10 T = (1.93 - 0) / (2.24/
√
10) = 2.72

−→ Thus we reject H0.



The goal

−→ We seek to prove the alternative hypothesis.

−→ We are happy if we reject H0.

−→ In the case that we reject H0, we might say:

Either H0 is false, or a rare event occurred.

Another example

Question: is the concentration of substance X in the water supply

above the safe level?

X 1,X 2, . . . ,X 4 ∼ iid Normal(µ, σ).

−→ We want to test H0: µ ≥ 6 (unsafe) versus Ha: µ < 6 (safe).

Test statistic: T =
X − 6

S/
√
4

If we wish to have the significance

level α = 5%, the rejection region is

T < t% = –2.35.

t(df=3) distribution

!2.35  

5%



One-tailed vs two-tailed tests

If you are trying to prove that a treat-

ment improves things, you want a

one-tailed (or one-sided) test.

You’ll reject H0 only if T < t%.

t(df=3) distribution

!2.35  

5%

If you are just looking for a differ-

ence, use a two-tailed (or two-sided)

test.

You’ll reject H0 if T < t% or T > t%.

t(df=3) distribution

3.18!3.18  

2.5%2.5%

P-values

P-value: −→ the smallest significance level (α) for which you

would fail to reject H0 with the observed data.

−→ the probability, if H0 was true, of receiving data as

extreme as what was observed.

X 1, . . . ,X 10 ∼ iid Normal(µ, σ), H0: µ = 0; Ha: µ )= 0.

x̄ = 1.93; s = 2.24

Tobs =
1.93−0
2.24/

√
10
= 2.72

P-value = Pr(|T| > Tobs) = 2.4%.

2*pt(-2.72,9)

t(df=9) distribution

Tobs$Tobs

1.2%1.2%



Another example

X 1, . . . ,X 4 ∼ Normal(µ, σ) H0: µ ≥ 6; Ha : µ < 6.

x̄ = 5.51; s = 0.43

Tobs = 5.51− 6

0.43/
√
4
= –2.28

P-value = Pr(T < Tobs | µ = 6) = 5.4%.

pt(-2.28, 3)

t(df=3) distribution

Tobs

5.4%

The P-value is a measure of evidence against the null hypothesis.

loosely speaking

Recall: We want to prove the alternative hypothesis (i.e., reject H0,

receive a small P-value)

Hypothesis tests and confidence intervals

−→ The 95% confidence interval for µ is the set of values, µ0,
such that the null hypothesis H0 : µ = µ0 would not be re-
jected by a two-sided test with α = 5%.

The 95% CI for µ is the set of plausible values of µ. If a value of µ
is plausible, then as a null hypothesis, it would not be rejected.

For example:

9.98 9.87 10.05 10.08 9.99 9.90 assumed to be iid Normal(µ,σ)

x̄ = 9.98; s = 0.082; n = 6; qt(0.975,5) = 2.57

The 95% CI for µ is

9.98 ± 2.57 × 0.082 /
√
6 = 9.98 ± 0.086 = (9.89,10.06)



Power

The power of a test = Pr(reject H0 | H0 is false).

µ0 µa C$C  

Null dist’n Alt dist’n

Area = power

The power depends on: • The null hypothesis and test statistic
• The sample size
• The true value of µ
• The true value of σ

Why “fail to reject”?

If the data are insufficient to reject H0, we say,

The data are insufficient to reject H0.

We shouldn’t say,We have proven H0.

−→ We may only have low power to detect anything but extreme

differences.

−→ We control the rate of type I errors (“false positives”) at 5%

(or whatever), but we may have little or no control over the

rate of type II errors.



The effect of sample size

Let X 1, . . . ,X n be iid Normal(µ, σ).

We wish to test H0 : µ = µ0 vs Ha : µ )= µ0.

Imagine µ = µa.

n = 4

µ0 µa C$C  

Null dist’n Alt dist’n

n = 16

µ0 µaC$C  

Null dist’n Alt dist’n

Test for a proportion

Suppose X ∼ Binomial(n, p).

Test H0 : p = 1
2
vs Ha : p )= 1

2
.

Reject H0 if X ≥ H or X ≤ L.

Choose H and L such that

Pr(X ≥ H | p = 1
2
) ≤ α/2 and Pr(X ≤ L | p = 1

2
) ≤ α/2.

Thus Pr(Reject H0 | H0 is true) ≤ α.

−→ The difficulty: The Binomial distribution is hard to work with.

Because of its discrete nature, you can’t get exactly your de-

sired significance level (α).



Rejection region

Consider X ∼ Binomial(n=29, p).

Test of H0 : p = 1
2
vs Ha : p )= 1

2
at significance level α = 0.05.

Lower critical value:

Pr(X ≤ 8) = 0.012

Pr(X ≤ 9) = 0.031 → L = 8

Upper critical value:

Pr(X ≥ 21) = 0.012

Pr(X ≥ 20) = 0.031 → H = 21

Reject H0 if X ≤ 8 or X ≥ 21. (For testing H0 : p = 1
2
, H = n – L)

Binomial(n=29, p=1/2)

0 5 10 15 20 25

Binomial(n=29, p=1/2)

1.2%1.2%



Significance level

Consider X ∼ Binomial(n=29, p).

Test of H0 : p = 1
2
vs Ha : p )= 1

2
at significance level α = 0.05.

Reject H0 if X ≤ 8 or X ≥ 21.

Actual significance level:

α = Pr(X ≤ 8 or X ≥ 21 | p = 1
2
)

= Pr(X ≤ 8 | p = 1
2
) + [1− Pr(X ≤ 20 | p = 1

2
)]

= 0.024

If we used instead “Reject H0 if X ≤ 9 or X ≥ 20”, the significance

level would be 0.061!

Confidence interval for a proportion

Suppose X ∼ Binomial(n=29, p) and we observe X = 24.

Consider the test of H0 : p = p0 vs Ha : p )= p0.

We reject H0 if

Pr(X ≤ 24 | p = p0) ≤ α/2 or Pr(X ≥ 24 | p = p0) ≤ α/2

95% confidence interval for p:

−→ The set of p0 for which a two-tailed test of H0 : p = p0 would

not be rejected, for the observed data, with α = 0.05.

−→ The “plausible” values of p.



Example 1

X ∼ Binomial(n=29, p); observe X = 24.

Lower bound of 95% confidence interval:

Largest p0 such that Pr(X ≥ 24 | p = p0) ≤ 0.025

Upper bound of 95% confidence interval:

Smallest p0 such that Pr(X ≤ 24 | p = p0) ≤ 0.025

−→ 95% CI for p: (0.642, 0.942)

Note: p̂ = 24/29 = 0.83 is not the midpoint of the CI.

Example 1

0 5 10 15 20 25

Binomial(n=29, p=0.64)

2.5%

0 5 10 15 20 25

Binomial(n=29, p=0.94)

2.5%



Example 2

X ∼ Binomial(n=25, p); observe X = 17.

Lower bound of 95% confidence interval:

pL such that 17 is the 97.5 percentile of Binomial(n=25, pL)

Upper bound of 95% confidence interval:

pH such that 17 is the 2.5 percentile of Binomial(n=25, pH)

−→ 95% CI for p: (0.465, 0.851)

Again, p̂ = 17/25 = 0.68 is not the midpoint of the CI

Example 2

0 5 10 15 20 25

Binomial(n=25, p=0.46)

2.5%

0 5 10 15 20 25

Binomial(n=25, p=0.85)

2.5%



The case X = 0

Suppose X ∼ Binomial(n, p) and we observe X = 0.

Lower limit of 95% confidence interval for p: → 0

Upper limit of 95% confidence interval for p:

pH such that

Pr(X ≤ 0 | p = pH) = 0.025

=⇒ Pr(X = 0 | p = pH) = 0.025

=⇒ (1− pH)n = 0.025

=⇒ 1− pH =
n
√
0.025

=⇒ pH = 1− n
√
0.025

In the case n = 10 and X = 0, the 95% CI for p is (0, 0.31).

A mad cow example

New York Times, Feb 3, 2004:

The department [of Agriculture] has not changed last year’s plans to test

40,000 cows nationwide this year, out of 30 million slaughtered. Janet Riley,

a spokeswoman for the American Meat Institute, which represents slaugh-

terhouses, called that “plenty sufficient from a statistical standpoint.”

Suppose that the 40,000 cows tested are

chosen at random from the population of 30

million cows, and suppose that 0 (or 1, or 2)

are found to be infected.

−→ How many of the 30 million total cows

would we estimate to be infected?

−→ What is the 95% confidence interval for

the total number of infected cows?

No. infected

Obs’d Est’d 95% CI

0 0 0 – 2767

1 750 19 – 4178

2 1500 182 – 5418



The case X = n

Suppose X ∼ Binomial(n, p) and we observe X = n.

Upper limit of 95% confidence interval for p: → 1

Lower limit of 95% confidence interval for p:

pL such that

Pr(X ≥ n | p = pL) = 0.025

=⇒ Pr(X = n | p = pL) = 0.025

=⇒ (pL)
n = 0.025

=⇒ pL =
n
√
0.025

In the case n = 25 and X = 25, the 95% CI for p is (0.86, 1.00).

Large n and medium p

Suppose X ∼ Binomial(n, p).

E(X) = n p SD(X) =
√

n p(1− p)

p̂ = X/n E(p̂) = p SD(p̂) =

√

p(1−p)
n

For large n and medium p, −→ p̂ ∼ Normal

(

p,
√

p(1−p)
n

)

Use 95% confidence interval p̂± 1.96

√

p̂(1−p̂)
n

−→ Unfortunately, this can behave poorly.

−→ Fortunately, you can just calculate exact confidence intervals.


