Inference about two groups

Differences between means

Suppose I measure the treatment response for 10 subjects getting treatment A and 10 subjects getting treatment B.

How different are the responses of the two treatments?

→ I am not interested in these *particular* subjects, but in the treatments *generally*.

Suppose that

- $\circ X_1, X_2, \dots, X_n$ are iid Normal(mean= μ_A , SD= σ), and
- Y_1, Y_2, \ldots, Y_m are iid Normal(mean= μ_B , SD= σ).

Then

$$\longrightarrow E(\overline{X} - \overline{Y}) = E(\overline{X}) - E(\overline{Y}) = \mu_{A} - \mu_{B}$$

$$\longrightarrow SD(\overline{X} - \overline{Y}) = \sqrt{SD(\overline{X})^{2} + SD(\overline{Y})^{2}} = \sqrt{\left(\frac{\sigma}{\sqrt{n}}\right)^{2} + \left(\frac{\sigma}{\sqrt{m}}\right)^{2}} = \sigma\sqrt{\frac{1}{n} + \frac{1}{m}}$$

Note: If n = m, then $SD(\overline{X} - \overline{Y}) = \sigma \sqrt{2/n}$.

Pooled estimate of the population SD

We have two different estimates of the populations' SD, σ :

$$\hat{\sigma}_{\mathsf{A}} = \boldsymbol{S}_{\mathsf{A}} = \sqrt{\frac{\sum(X_i - \overline{X})^2}{\mathsf{n} - 1}} \qquad \hat{\sigma}_{\mathsf{B}} = \boldsymbol{S}_{\mathsf{B}} = \sqrt{\frac{\sum(Y_i - \overline{Y})^2}{\mathsf{m} - 1}}$$

We can use all of the data together to obtain an improved estimate of σ , which we call the "pooled" estimate.

$$\begin{split} \hat{\sigma}_{\text{pooled}} &= \sqrt{\frac{\sum (X_i - \overline{X})^2 + \sum (Y_i - \overline{Y})^2}{n + m - 2}} \\ &= \sqrt{\frac{S_A^2(n - 1) + S_B^2(m - 1)}{n + m - 2}} \end{split}$$

Note: If n = m, then $\hat{\sigma}_{\text{pooled}} = \sqrt{\left(S_{\text{A}}^2 + S_{\text{B}}^2\right)/2}$

$$\widehat{SD}(\overline{X} - \overline{Y}) = \hat{\sigma}_{\text{pooled}} \sqrt{\frac{1}{n} + \frac{1}{m}}$$

$$= \sqrt{\left[\frac{S_A^2(n-1) + S_B^2(m-1)}{n+m-2}\right] \cdot \left[\frac{1}{n} + \frac{1}{m}\right]}$$

In the case
$$n = m$$
,

$$\widehat{\mathrm{SD}}(\overline{X} - \overline{Y}) = \sqrt{\frac{S_{\mathrm{A}}^2 + S_{\mathrm{B}}^2}{n}}$$

CI for the difference between the means

$$\frac{(\overline{\pmb{X}}-\overline{\pmb{Y}})-(\mu_{\text{A}}-\mu_{\text{B}})}{\widehat{\text{SD}}(\overline{\pmb{X}}-\overline{\pmb{Y}})}\sim t(\text{df}=\text{n}+\text{m}-\text{2})$$

The procedure:

- 1. Calculate $(\overline{X} \overline{Y})$.
- 2. Calculate $\widehat{SD}(\overline{X} \overline{Y})$.
- 3. Find the 97.5 percentile of the t distr'n with n + m 2 d.f. $\longrightarrow t$
- 4. Calculate the interval: $(\overline{X} \overline{Y}) \pm t \cdot \widehat{SD}(\overline{X} \overline{Y})$.

Treatment A:

2.67 2.86 2.87 3.04 3.09 3.09 3.13 3.27 3.35 n = 9, $\bar{x} \approx 3.04, \, s_A \approx 0.214$

Treatment B:

3.78 3.06 3.64 3.31 3.31 3.51 3.22 3.67 $m=8, \ \bar{y}\approx 3.44, \ s_B\approx 0.250$

$$\hat{\sigma}_{\text{pooled}} = \sqrt{\frac{s_{\text{A}}^2(n-1) + s_{\text{B}}^2(m-1)}{n+m-2}} = \dots \approx 0.231$$

$$\widehat{SD}(\overline{X} - \overline{Y}) = \hat{\sigma}_{\text{pooled}} \sqrt{\frac{1}{n} + \frac{1}{m}} = \dots \approx 0.112$$

97.5 percentile of t(df=15) \approx 2.13

Example

95% confidence interval:

 $(3.04 - 3.44) \pm 2.13 \cdot 0.112 \approx -0.40 \pm 0.24 = (-0.64, -0.16).$

Treatment A: n = 10sample mean: $\bar{x} = 55.22$ sample SD: $s_A = 7.64$ t value = qt(0.975, 9) = 2.26

 \longrightarrow 95% CI for μ_{A} :

 $55.22 \pm 2.26 \times 7.64 / \sqrt{10} = 55.2 \pm 5.5 = (49.8, 60.7)$

Treatment B: n = 16sample mean: $\bar{x} = 68.2$ sample SD: $s_B = 18.1$ t value = qt(0.975, 15) = 2.13

 \longrightarrow 95% CI for $\mu_{\rm B}$:

 $68.2 \pm 2.13 \times 18.1 / \sqrt{16} = 68.2 \pm 9.7 = (58.6, 77.9)$

Example

$$\hat{\sigma}_{\text{pooled}} = \sqrt{\frac{(7.64)^2 \times (10-1) + (18.1)^2 \times (16-1)}{10+16-2}} = 15.1$$

$$\widehat{\mathrm{SD}}(\overline{X} - \overline{Y}) = \hat{\sigma}_{\mathrm{pooled}} \times \sqrt{\frac{1}{\mathrm{n}} + \frac{1}{\mathrm{m}}} = 15.1 \times \sqrt{\frac{1}{\mathrm{10}} + \frac{1}{\mathrm{16}}} = 6.08$$

t value: qt(0.975, 10+16-2) = 2.06

 \longrightarrow 95% confidence interval for $\mu_{A} - \mu_{B}$:

 $(55.2 - 68.2) \pm 2.06 \times 6.08 = -13.0 \pm 12.6 = (-25.6, -0.5)$

One problem

What if the two populations really have different SDs, σ_A and σ_B ? Suppose that

- $\circ X_1, X_2, \dots, X_n$ are iid Normal(μ_A, σ_A),
- \circ Y₁, Y₂,..., Y_m are iid Normal(μ_B , σ_B).

Then

$$SD(\overline{X} - \overline{Y}) = \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}$$
 $\widehat{SD}(\overline{X} - \overline{Y}) = \sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}$

The problem:

 $\longrightarrow \ \frac{(\overline{X} - \overline{Y}) - (\mu_{\text{A}} - \mu_{\text{B}})}{\widehat{\text{SD}}(\overline{X} - \overline{Y})} \ \text{ does not follow a t distribution.}$

In the case that $\sigma_A \neq \sigma_B$:

$$\text{Let } k = \frac{\left(\frac{s_A^2}{n} + \frac{s_B^2}{m}\right)^2}{\frac{\left(s_A^2/n\right)^2}{n-1} + \frac{\left(s_B^2/m\right)^2}{m-1}}$$

Let t^* be the 97.5 percentile of the t distribution with k d.f.

 $\longrightarrow \ \text{Use} \ (\overline{\pmb{X}} - \overline{\pmb{Y}}) \ \pm \ t^{\star} \ \widehat{\text{SD}}(\overline{\pmb{X}} - \overline{\pmb{Y}}) \ \text{as a 95\% confidence interval.}$

Example

$$\mathsf{k} = \frac{[(7.64)^2/10 + (18.1)^2/16]^2}{\frac{[(7.64)^2/10]^2}{9} + \frac{[(18.1)^2/16]^2}{15}} = \frac{(5.84 + 20.6)^2}{\frac{(5.84)^2}{9} + \frac{(20.6)^2}{15}} = 21.8.$$

t value = qt(0.975, 21.8) = 2.07.

$$\widehat{SD}(\overline{X} - \overline{Y}) = \sqrt{\frac{s_A^2}{n} + \frac{s_B^2}{m}} = \sqrt{\frac{(7.64)^2}{10} + \frac{(18.1)^2}{16}} = 5.14.$$

$$\longrightarrow$$
 95% CI for $\mu_A - \mu_B$:
-13.0 ± 2.07 × 5.14 = -13.0 ± 10.7 = (-23.7, -2.4)

Degrees of freedom

 \circ One sample of size n:

$$X_1, X_2, \dots, X_n \longrightarrow (\overline{X} - \mu)/(S/\sqrt{n}) \sim t(df = n - 1)$$

 \circ Two samples, of size n and m:

$$\begin{array}{ccc} X_1, X_2, \dots, X_n \\ Y_1, Y_2, \dots, Y_m \end{array} \longrightarrow \\ \begin{array}{ccc} (\overline{X} - \overline{Y}) - (\mu_A - \mu_B) \\ & \\ \hat{\sigma}_{\text{pooled}} \sqrt{\frac{1}{n} + \frac{1}{m}} \end{array} \sim t(\text{df} = n + m - 2) \end{array}$$

What are these "degrees of freedom"?

Degrees of freedom

The degrees of freedom concern our estimate of the population standard deviation

We use the residuals $(X_1 - \overline{X}), \ldots, (X_n - \overline{X})$ to estimate σ .

 \longrightarrow But we really only have n-1 independent data points ("degrees of freedom"), since $\sum(X_i-\overline{X})=0.$

In the two-sample case, we use $(X_1 - \overline{X}), (X_2 - \overline{X}), \dots, (X_n - \overline{X})$ and $(Y_1 - \overline{Y}), \dots, (Y_m - \overline{Y})$ to estimate σ .

 $\longrightarrow \ \text{But } \sum (X_i - \overline{X}) = 0 \text{ and } \sum (Y_i - \overline{Y}) = 0 \text{, and so we really have } \\ \text{just } n + m - 2 \text{ independent data points.}$

Testing the difference between two means

Treatment A: $X_1, \ldots, X_n \sim \text{iid Normal}(\mu_A, \sigma_A)$

Treatment B: $Y_1, \ldots, Y_m \sim \text{iid Normal}(\mu_B, \sigma_B)$

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$

Test statistic:
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}}$$

Reject H₀ if $|T| > t_{\alpha/2}$

If H₀ is true, then T follows (approximately) a t distr'n with k d.f. k according to the nasty formula shown previously

Treatment A: n = 12, sample mean = 103.7, sample SD = 7.2 Treatment B: n = 9, sample mean = 97.0, sample SD = 4.5

$$\widehat{\mathrm{SD}}(\overline{X} - \overline{Y}) = \sqrt{\frac{7.2^2}{12} + \frac{4.5^2}{9}} = 1.80$$

T = (103.7 - 97.0)/1.80 = 2.60.

k = ... = 18.48, so C = 2.10. Thus we reject H₀ at α = 0.05.

Always give a confidence interval!

 \rightarrow Make a statistician happy: draw a picture of the data.

Good plot, bad plot

What to say

When rejecting H₀:

- The difference is statistically significant.
- The observed difference can not reasonably be explained by chance variation.

When failing to reject H₀:

- There is insufficient evidence to conclude that $\mu_{A} \neq \mu_{B}$.
- The difference is not statistically significant.
- The observed difference could reasonably be the result of chance variation.

What about a different significance level?

Recall T = 2.60 k = 18.48

If $\alpha = 0.10$, C = 1.73 \implies Reject H₀

If $\alpha = 0.05$, C = 2.10 \implies Reject H₀

If $\alpha = 0.01$, C = 2.87 \implies Fail to reject H₀

If $\alpha = 0.001$, C = 3.90 \implies Fail to reject H₀

P-value: the smallest α for which you would still reject H₀ with the observed data.

With these data, P = 2 * (1 - pt(2.60, 18.48)) = 0.018.

Another example

Suppose I measure the blood pressure of 6 subjects on a low salt diet and 6 subjects on a high salt diet. We wish to prove that the high salt diet causes an increase in blood pressure.

We want to test $H_0: \mu_L = \mu_H$ versus $H_a: \mu_L < \mu_H$

 \longrightarrow Are the data compatible with H₀?

A one-tailed test

Test statistic: T =
$$\frac{\overline{X} - \overline{Y}}{\widehat{SD}(\overline{X} - \overline{Y})}$$

Since we seek to prove that μ_{L} is smaller than μ_{H} , only large negative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr(T < C | $\mu_{L} = \mu_{H}$) = α .

The example

Low salt: n = 6; sample mean = 51.0, sample SD = 10.0 High salt: n = 6; sample mean = 69.1, sample SD = 15.1

 $\bar{x} - \bar{y} = -18.1$ $\widehat{SD}(\bar{X} - \bar{Y}) = 7.40$ T = -18.1 / 7.40 = -2.44k = 8.69. If α = 0.05, then C = -1.84. Since T < C, we reject H₀ and conclude that $\mu_L < \mu_H$. Note: P-value = pt(-2.44, 8.69) = 0.019. Suppose I do some pre/post measurements.

I make some measurement on each of 5 subjects before and after some treatment.

Question: Does the treatment have any effect?

Pre/post example

In this sort of pre/post measurement example, study the differences as a single sample.

Why? The pre/post measurements are likely associated, and as a result one can more precisely learn about the effect of the treatment.

Subject	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0
Difference	-0.8	9.8	10.5	9.3	16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = \ldots = (1.4, 16.5)

P-value for test of $\mu_{\text{before}} = \mu_{\text{after}}$: 0.03.

Summary

- \bullet Tests of hypotheses \rightarrow answering yes/no questions regarding population parameters.
- There are two kinds of errors:
 - \circ Type I: Reject H₀ when it is true.
 - \circ Type II: Fail to reject H_0 when it is false.
- If we fail to reject H₀, we do not "accept H₀".
- P-value: the probability, if H₀ is true, of obtaining data as extreme as was observed. Pr(data | no effect) rather than Pr(no effect | data).
- P-values are a function of the data (and thus, they are random).
- Power: the probability of rejecting H₀ when it is false.
- Always look at the confidence interval as well as the P-value.

Example

- $\overline{X} = 47.5$ s_A = 10.5 n = 6
- $\overline{Y} = 74.3$ s_B = 20.6 m = 9

 $s_p = 17.4$ T = -2.93

 \longrightarrow P = 2*pt(-2.93, 6+9-2) = 0.011.

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m)

R = sum of ranks for X's

Х	Y	rank
35.0		1
38.2		2
43.3		3
	46.8	4
	49.7	5
50.0		6
	51.9	7
57.1		8
61.2		9
	74.1	10
	75.1	11
	84.5	12
	90.0	13
	95.1	14
	101.5	15

(Also known as the Mann-Whitney Test)

R = 1 + 2 + 3 + 6 + 8 + 9 = 29

P-value = 0.026

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically

Permutation test

X or Y	group		X or Y	group	
X_1	1	_	X_1	2	
X_2	1		<i>X</i> ₂	2	
:	1		:	1	
Xn	1	\rightarrow T _{obs}	X _n	2	$\rightarrow T^{\star}$
<i>Y</i> ₁	2		<i>Y</i> ₁	1	
Y ₂	2		Y ₂	2	
:	2		:	1	
Ym	2		Ym	1	
			Group stat	us shuffl	ed

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

 $\text{P-value} = \text{Pr}(|T^{\star}| \geq |T_{obs}|)$

- \longrightarrow Small n & m: Look at all $\binom{n+m}{n}$ possible shuffles
- \longrightarrow Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:

All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.

Estimating the permutation P-value

Let P be the true P-value (if we do *all possible* shuffles).

Do N shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.

 $\longrightarrow \hat{P} = \frac{X}{N}$ where $X \sim \text{Binomial}(N,P)$

 $\longrightarrow \ \mathsf{E}(\hat{\mathsf{P}}) = \mathsf{P} \qquad \ \mathsf{SD}(\hat{\mathsf{P}}) = \sqrt{\frac{\mathsf{P}(1-\mathsf{P})}{\mathsf{N}}}$

If the "true" P-value was P = 5%, and we do N=1000 shuffles: $SD(\hat{P}) = 0.7\%$.

Summary

The t-test relies on a normality assumption. If this is a worry, consider:

- Paired data:
 - \circ Sign test
 - \circ Signed rank test
 - Permutation test
- Unpaired data:
 - Rank-sum test
 - \circ Permutation test
- \longrightarrow The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.

Maximum Likelihood Estimation

Estimation

Goal: Estimate a population parameter θ .

Data: $X_1, X_2, \ldots, X_n \sim \text{iid}$ with distribution depending on θ .

If one has many estimators to choose from, pick

- That with the smallest SE, among all unbiased estimators
- That with the smallest RMS error, even if biased
- \rightarrow Sometimes it is not clear how to form even one good estimator.

Maximum likelihood estimation

Likelihood function: $L(\theta) = Pr(data \mid \theta)$ Log likelihood: $l(\theta) = \log Pr(data \mid \theta)$

Maximum likelihood estimate:

Choose, as the estimate of θ , the value of θ for which the likelihood function L(θ) (or equivalently, the log likelihood function) is maximized.

 \longrightarrow You need to solve these equations analytically or numerically.

Suppose $X \sim \text{Binomial}(n, p)$.

 $\begin{array}{ll} \text{log likelihood function:} \quad l(p) = \log \left\{ \binom{n}{x} \; p^x \; (1-p)^{(n-x)} \right\} \\ & = x \; \log(p) + (n-x) \; \log(1-p) + \text{constant} \end{array}$

MLE: the obvious thing: $\hat{p} = x/n$

Example 2

Suppose $X_1, \ldots, X_{20} \sim \text{iid Poisson}(\lambda)$.

log likelihood function: $l(\lambda) = \log \left\{ \prod_i e^{-\lambda} \lambda^{\mathbf{x}_i} / \mathbf{x}_i! \right\}$ = ... = $-20\lambda + (\sum \mathbf{x}_i) \log \lambda + \text{ constant}$

MLE: the obvious thing: $\hat{\lambda} = \bar{x}$

Suppose X₁, ..., X_n ~ iid N(μ , σ)

log likelihood function: $l(\mu, \sigma) = \log \left\{ \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mu}{\sigma} \right)^2 \right] \right\}$

MLEs: almost the obvious things:

$$\hat{\mu} = \bar{\mathbf{x}}$$
 $\hat{\sigma} = \sqrt{\sum (\mathbf{x}_{i} - \bar{\mathbf{x}})^{2}/n}$

Example 3: the log likelihood surface

About MLEs

Maximum likelihood estimation is a general procedure for finding a reasonable estimator

- In many cases, the MLE turns out to be the obvious thing.
- MLEs are often very good (but not necessarily the best) possible estimators:
 - \circ unbiased or nearly unbiased
 - \circ small standard errors
- Sometimes obtaining the MLEs requires hefty computation!

Example 4: ABO blood groups

Phenotype	Genotype	Frequency
0	00	p ₀ ²
А	AA or AO	$p_{\text{A}}^2+2p_{\text{A}}p_{\text{O}}$
В	BB or BO	$p_{\rm B}^2+2p_{\rm B}p_{\rm O}$
AB	AB	$2p_Ap_B$

Frequencies under the assumption of Hardy-Weinberg equilibrium.

Phenotype	No. subjects	% subjects
0	117	46.8%
А	98	39.2%
В	29	11.6%
AB	6	2.4%
Total	250	100%

 $\longrightarrow~$ What are the estimates of $\textbf{p}_{A},~\textbf{p}_{B},~\textbf{p}_{O}?$

Example 4: Estimates

Simple estimates:

$$\begin{array}{l} \longrightarrow \quad \tilde{p}_{O} = \sqrt{0.468} = 0.684 \\ \longrightarrow \quad \tilde{p}_{A}^{2} + 2\tilde{p}_{A}0.684 = 0.392 \quad \longrightarrow \quad \tilde{p}_{A} = 0.243 \\ \longrightarrow \quad \tilde{p}_{B} = 0.024/(2\tilde{p}_{A}) = 0.072 \end{array}$$

Log likelihood:

$$\begin{split} l(\textbf{p}_{O},\textbf{p}_{A},\textbf{p}_{B}) = \\ \textbf{117} \log(\textbf{p}_{O}^{2}) + \textbf{98} \log(\textbf{p}_{A}^{2} + \textbf{2}\textbf{p}_{A}\textbf{p}_{O}) + \textbf{29} \log(\textbf{p}_{B}^{2} + \textbf{2}\textbf{p}_{B}\textbf{p}_{O}) + \textbf{6} \log(\textbf{2}\textbf{p}_{A}\textbf{p}_{B}) \end{split}$$

Example 5: log likelihood

