Inference about two groups

Differences between means

Suppose I measure the treatment response for 10 subjects getting treatment A and 10 subjects getting treatment B.

How different are the responses of the two treatments?
\longrightarrow I am not interested in these particular subjects, but in the treatments generally.

$\overline{\boldsymbol{X}}-\overline{\boldsymbol{Y}}$

Suppose that

- $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid $\operatorname{Normal(mean=}=\mu_{\mathrm{A}}, \mathrm{SD}=\sigma$), and
- $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{m}}$ are iid $\operatorname{Normal}\left(\right.$ mean $=\mu_{\mathrm{B}}, \mathrm{SD}=\sigma$).

Then
$\longrightarrow \mathrm{E}(\bar{X}-\bar{Y})=\mathrm{E}(\bar{X})-\mathrm{E}(\bar{Y})=\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$
$\longrightarrow \mathrm{SD}(\bar{X}-\bar{Y})=\sqrt{\mathrm{SD}(\bar{X})^{2}+\mathrm{SD}(\bar{Y})^{2}}=$

$$
\sqrt{\left(\frac{\sigma}{\sqrt{n}}\right)^{2}+\left(\frac{\sigma}{\sqrt{m}}\right)^{2}}=\sigma \sqrt{\frac{1}{n}+\frac{1}{m}}
$$

Note: If $\mathrm{n}=\mathrm{m}$, then $\mathrm{SD}(\bar{X}-\bar{Y})=\sigma \sqrt{2 / \mathrm{n}}$.

Pooled estimate of the population SD

We have two different estimates of the populations' SD, σ :

$$
\hat{\sigma}_{\mathrm{A}}=S_{\mathrm{A}}=\sqrt{\frac{\sum\left(X_{\mathrm{i}}-\bar{X}\right)^{2}}{n-1}} \quad \hat{\sigma}_{\mathrm{B}}=S_{\mathrm{B}}=\sqrt{\frac{\sum\left(Y_{\mathrm{i}}-\bar{Y}\right)^{2}}{\mathrm{~m}-1}}
$$

We can use all of the data together to obtain an improved estimate of σ, which we call the "pooled" estimate.

$$
\begin{aligned}
\hat{\sigma}_{\text {pooled }} & =\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}+\sum\left(Y_{i}-\bar{Y}\right)^{2}}{n+m-2}} \\
& =\sqrt{\frac{S_{A}^{2}(\mathrm{n}-1)+S_{\mathrm{B}}^{2}(\mathrm{~m}-1)}{\mathrm{n}+\mathrm{m}-2}}
\end{aligned}
$$

Note: If $\mathrm{n}=\mathrm{m}$, then $\hat{\sigma}_{\text {pooled }}=\sqrt{\left(S_{\mathrm{A}}^{2}+S_{\mathrm{B}}^{2}\right) / 2}$

Estimated SE of $(\bar{X}-\overline{\boldsymbol{Y}})$

$$
\begin{aligned}
\widehat{\mathrm{SD}}(\bar{X}-\bar{Y}) & =\hat{\sigma}_{\text {pooled }} \sqrt{\frac{1}{\mathrm{n}}+\frac{1}{m}} \\
& =\sqrt{\left[\frac{S_{A}^{2}(\mathrm{n}-1)+S_{B}^{2}(m-1)}{\mathrm{n}+\mathrm{m}-2}\right] \cdot\left[\frac{1}{\mathrm{n}}+\frac{1}{m}\right]}
\end{aligned}
$$

In the case $\mathrm{n}=\mathrm{m}$,

$$
\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=\sqrt{\frac{S_{\mathrm{A}}^{2}+S_{B}^{2}}{\mathrm{n}}}
$$

Cl for the difference between the means

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{\mathrm{A}}-\mu_{\mathrm{B}}\right)}{\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})} \sim \mathrm{t}(\mathrm{df}=\mathrm{n}+\mathrm{m}-2)
$$

The procedure:

1. Calculate $(\bar{X}-\bar{Y})$.
2. Calculate $\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})$.
3. Find the 97.5 percentile of the t distr'n with $n+m-2$ d.f.
$\longrightarrow t$
4. Calculate the interval: $(\bar{X}-\bar{Y}) \pm \mathrm{t} \cdot \widehat{\mathrm{SD}}(\bar{X}-\bar{Y})$.

Example

Treatment A:

$$
\begin{aligned}
& 2.672 .862 .873 .043 .093 .093 .133 .273 .35 \\
& \mathrm{n}=9, \bar{x} \approx 3.04, \mathrm{~s}_{\mathrm{A}} \approx 0.214
\end{aligned}
$$

Treatment B:

$$
\begin{aligned}
& 3.783 .063 .643 .313 .313 .513 .223 .67 \\
& \mathrm{~m}=8, \bar{y} \approx 3.44, \mathrm{~s}_{\mathrm{B}} \approx 0.250
\end{aligned}
$$

$$
\hat{\sigma}_{\text {pooled }}=\sqrt{\frac{s_{A}^{2}(n-1)+s_{B}^{2}(m-1)}{n+m-2}}=\ldots \approx 0.231
$$

$$
\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=\hat{\sigma}_{\text {pooled }} \sqrt{\frac{1}{\mathrm{n}}+\frac{1}{\mathrm{~m}}}=\ldots \approx 0.112
$$

97.5 percentile of $\mathrm{t}(\mathrm{df}=15) \approx 2.13$

Example

95\% confidence interval:
$(3.04-3.44) \pm 2.13 \cdot 0.112 \approx-0.40 \pm 0.24=(-0.64,-0.16)$.

The data

Example

Treatment A: $\quad n=10$
sample mean: $\bar{x}=55.22$
sample SD: $\mathrm{s}_{\mathrm{A}}=7.64$
t value $=q t(0.975,9)=2.26$
$\longrightarrow 95 \% \mathrm{Cl}$ for μ_{A} :
$55.22 \pm 2.26 \times 7.64 / \sqrt{10}=55.2 \pm 5.5=(49.8,60.7)$
Treatment B: $\quad n=16$
sample mean: $\bar{x}=68.2$
sample SD: $\mathrm{s}_{\mathrm{B}}=18.1$
t value $=\mathrm{qt}(0.975,15)=2.13$
$\longrightarrow 95 \% \mathrm{Cl}$ for μ_{B} :

$$
68.2 \pm 2.13 \times 18.1 / \sqrt{16}=68.2 \pm 9.7=(58.6,77.9)
$$

Example

$\hat{\sigma}_{\text {pooled }}=\sqrt{\frac{(7.64)^{2} \times(10-1)+(18.1)^{2} \times(16-1)}{10+16-2}}=15.1$
$\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=\hat{\sigma}_{\text {pooled }} \times \sqrt{\frac{1}{\mathrm{n}}+\frac{1}{\mathrm{~m}}}=15.1 \times \sqrt{\frac{1}{10}+\frac{1}{16}}=6.08$
t value: qt (0.975, $10+16-2)=2.06$
$\longrightarrow 95 \%$ confidence interval for $\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$:
$(55.2-68.2) \pm 2.06 \times 6.08=-13.0 \pm 12.6=(-25.6,-0.5)$

Example

One problem

What if the two populations really have different $\mathrm{SDs}, \sigma_{\mathrm{A}}$ and σ_{B} ?
Suppose that

- $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid $\operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma_{\mathrm{A}}\right)$,
- $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{m}}$ are iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma_{\mathrm{B}}\right)$.

Then

$$
\mathrm{SD}(\bar{X}-\bar{Y})=\sqrt{\frac{\sigma_{\mathrm{A}}^{2}}{\mathrm{n}}+\frac{\sigma_{B}^{2}}{m}} \quad \widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=\sqrt{\frac{S_{\mathrm{A}}^{2}}{\mathrm{n}}+\frac{S_{B}^{2}}{\mathrm{~m}}}
$$

The problem:
$\longrightarrow \frac{(\bar{X}-\bar{Y})-\left(\mu_{\mathrm{A}}-\mu_{\mathrm{B}}\right)}{\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})}$ does not follow a t distribution.

An approximation

In the case that $\sigma_{\mathrm{A}} \neq \sigma_{\mathrm{B}}$:

Let $k=\frac{\left(\frac{s_{A}^{2}}{n}+\frac{s_{\mathrm{E}}^{2}}{m}\right)^{2}}{\frac{\left(s_{A}^{2} / n\right)^{2}}{n-1}+\frac{\left(s_{B}^{2} / m\right)^{2}}{m-1}}$

Let t^{\star} be the 97.5 percentile of the t distribution with k d.f.
\longrightarrow Use $(\bar{X}-\bar{Y}) \pm \mathrm{t}^{\star} \widehat{\mathrm{SD}}(\bar{X}-\bar{Y})$ as a 95% confidence interval.

Example
$k=\frac{\left[(7.64)^{2} / 10+(18.1)^{2} / 16\right]^{2}}{\frac{\left.(7.64)^{2} / 10\right]^{2}}{9}+\frac{\left[(18.1)^{2} / 16\right]^{2}}{15}}=\frac{(5.84+20.6)^{2}}{\frac{(5.84)^{2}}{9}+\frac{(20.6)^{2}}{15}}=21.8$.
t value $=q t(0.975,21.8)=2.07$.
$\widehat{S D}(\bar{X}-\bar{Y})=\sqrt{\frac{s_{A}^{2}}{n}+\frac{s_{B}^{2}}{m}}=\sqrt{\frac{(7.64)^{2}}{10}+\frac{(18.1)^{2}}{16}}=5.14$.
$\longrightarrow 95 \% \mathrm{Cl}$ for $\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$:

$$
-13.0 \pm 2.07 \times 5.14=-13.0 \pm 10.7=(-23.7,-2.4)
$$

Example

Degrees of freedom

- One sample of size n:

$$
X_{1}, X_{2}, \ldots, X_{\mathrm{n}} \longrightarrow(\bar{X}-\mu) /(S / \sqrt{\mathrm{n}}) \sim \mathrm{t}(\mathrm{df}=\mathrm{n}-1)
$$

- Two samples, of size n and m :

$$
\begin{aligned}
& X_{1}, X_{2}, \ldots, X_{\mathrm{n}} \\
& Y_{1}, Y_{2}, \ldots, Y_{\mathrm{m}}
\end{aligned} \longrightarrow \frac{(\bar{X}-\bar{Y})-\left(\mu_{\mathrm{A}}-\mu_{\mathrm{B}}\right)}{\hat{\sigma}_{\text {pooled }} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim \mathrm{t}(\mathrm{df}=\mathrm{n}+\mathrm{m}-2)
$$

Degrees of freedom

The degrees of freedom concern our estimate of the population standard deviation

We use the residuals $\left(X_{1}-\bar{X}\right), \ldots,\left(X_{\mathrm{n}}-\bar{X}\right)$ to estimate σ.
\longrightarrow But we really only have $\mathrm{n}-1$ independent data points ("degrees of freedom"), since $\sum\left(X_{\mathrm{i}}-\bar{X}\right)=0$.

In the two-sample case, we use $\left(X_{1}-\bar{X}\right),\left(X_{2}-\bar{X}\right), \ldots,\left(X_{\mathrm{n}}-\bar{X}\right)$ and $\left(Y_{1}-\bar{Y}\right), \ldots,\left(Y_{\mathrm{m}}-\bar{Y}\right)$ to estimate σ.
\longrightarrow But $\sum\left(X_{\mathrm{i}}-\bar{X}\right)=0$ and $\sum\left(Y_{\mathrm{i}}-\bar{Y}\right)=0$, and so we really have just $\mathrm{n}+\mathrm{m}-2$ independent data points.

Testing the difference between two means

Treatment A: $X_{1}, \ldots, X_{\mathrm{n}} \sim$ iid $\operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma_{\mathrm{A}}\right)$
Treatment B: $Y_{1}, \ldots, Y_{\mathrm{m}} \sim$ iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma_{\mathrm{B}}\right)$
Test $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$

Test statistic: $\mathrm{T}=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_{A}^{2}}{\mathrm{n}}+\frac{S_{B}^{2}}{m}}}$
Reject H_{0} if $|\mathrm{T}|>\mathrm{t}_{\alpha / 2}$

If H_{0} is true, then T follows (approximately) a t distr'n with k d.f. k according to the nasty formula shown previously

Example

Treatment A: $\mathrm{n}=12$, sample mean $=103.7$, sample $\mathrm{SD}=7.2$
Treatment B: $n=9$, sample mean $=97.0$, sample $S D=4.5$
$\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=\sqrt{\frac{7.2^{2}}{12}+\frac{4.5^{2}}{9}}=1.80$
$\mathrm{T}=(103.7-97.0) / 1.80=2.60$.
$\mathrm{k}=\ldots=18.48$, so $\mathrm{C}=2.10$. Thus we reject H_{0} at $\alpha=0.05$.

Always give a confidence interval!

$$
\begin{aligned}
& \mathrm{P}=0.019 \\
& 95 \% \mathrm{CI}:(-34.9,-1.2)
\end{aligned}
$$

$$
\begin{aligned}
& P=0.019 \\
& 95 \% \text { CI: }(-13.6,-0.5)
\end{aligned}
$$

\longrightarrow Make a statistician happy: draw a picture of the data.

Good plot, bad plot

What to say

When rejecting H_{0} :

- The difference is statistically significant.
- The observed difference can not reasonably be explained by chance variation.

When failing to reject H_{0} :

- There is insufficient evidence to conclude that $\mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$.
- The difference is not statistically significant.
- The observed difference could reasonably be the result of chance variation.

What about a different significance level?

$$
\text { Recall } \mathrm{T}=2.60 \quad \mathrm{k}=18.48
$$

$$
\begin{aligned}
& \text { If } \alpha=0.10, \quad \mathrm{C}=1.73 \Longrightarrow \text { Reject } \mathrm{H}_{0} \\
& \text { If } \alpha=0.05, \quad \mathrm{C}=2.10 \Longrightarrow \text { Reject } \mathrm{H}_{0} \\
& \text { If } \alpha=0.01, \quad \mathrm{C}=2.87 \Longrightarrow \text { Fail to reject } \mathrm{H}_{0} \\
& \text { If } \quad \alpha=0.001, \quad \mathrm{C}=3.90 \Longrightarrow \text { Fail to reject } \mathrm{H}_{0}
\end{aligned}
$$

P-value: the smallest α for which you would still reject H_{0} with the observed data.

With these data, $\mathrm{P}=2 *(1-\mathrm{pt}(2.60,18.48))=0.018$.

Another example

Suppose I measure the blood pressure of 6 subjects on a low salt diet and 6 subjects on a high salt diet. We wish to prove that the high salt diet causes an increase in blood pressure.

We imagine $\quad X_{1}, \ldots, X_{\mathrm{n}} \sim$ iid $\operatorname{Normal}\left(\mu_{\mathrm{L}}, \sigma_{\mathrm{L}}\right)$ low salt

$$
Y_{1}, \ldots, Y_{\mathrm{m}} \sim \text { iid } \operatorname{Normal}\left(\mu_{\mathrm{H}}, \sigma_{\mathrm{H}}\right) \text { high salt }
$$

We want to test $\mathrm{H}_{0}: \mu_{\mathrm{L}}=\mu_{\mathrm{H}}$ versus $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{L}}<\mu_{\mathrm{H}}$
\longrightarrow Are the data compatible with H_{0} ?

A one-tailed test

Test statistic: $\mathrm{T}=\frac{\bar{X}-\bar{Y}}{\widehat{\mathrm{SD}}(\bar{X}-\bar{Y})}$
Since we seek to prove that μ_{L} is smaller than μ_{H}, only large negative values of the statistic are interesting.

Thus, our rejection region is $\mathrm{T}<\mathrm{C}$ for some critical value C .
We choose C so that $\operatorname{Pr}\left(\mathrm{T}<\mathrm{C} \mid \mu_{\mathrm{L}}=\mu_{\mathrm{H}}\right)=\alpha$.

vs

The example

Low salt: $\mathrm{n}=6$; sample mean $=51.0$, sample $\mathrm{SD}=10.0$
High salt: $n=6$; sample mean $=69.1$, sample $S D=15.1$
$\bar{x}-\bar{y}=-18.1 \quad \widehat{\mathrm{SD}}(\bar{X}-\bar{Y})=7.40 \quad \mathrm{~T}=-18.1 / 7.40=-2.44$
$\mathrm{k}=8.69$. If $\alpha=0.05$, then $\mathrm{C}=-1.84$.
Since $\mathrm{T}<\mathrm{C}$, we reject H_{0} and conclude that $\mu_{\mathrm{L}}<\mu_{\mathrm{H}}$.
Note: P-value $=$ pt $(-2.44,8.69)=0.019$.

Example

Suppose I do some pre/post measurements.
I make some measurement on each of 5 subjects before and after some treatment.

Question: Does the treatment have any effect?

Subject	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0

Measurements

Differences

Pre/post example

In this sort of pre/post measurement example, study the differences as a single sample.

Why? The pre/post measurements are likely associated, and as a result one can more precisely learn about the effect of the treatment.

Subject	1	2	3	4	5
Before	18.6	14.3	21.4	19.3	24.0
After	17.8	24.1	31.9	28.6	40.0
Difference	-0.8	9.8	10.5	9.3	16.0

$\mathrm{n}=5$; mean difference $=8.96$; SD difference $=6.08$.
$95 \% \mathrm{Cl}$ for underlying mean difference $=\ldots=(1.4,16.5)$
P-value for test of $\mu_{\text {before }}=\mu_{\text {after }}: 0.03$.

Summary

- Tests of hypotheses \rightarrow answering yes/no questions regarding population parameters.
- There are two kinds of errors:
- Type I: Reject H_{0} when it is true.
- Type II: Fail to reject H_{0} when it is false.
- If we fail to reject H_{0}, we do not "accept H_{0} ".
- P-value: the probability, if H_{0} is true, of obtaining data as extreme as was observed. Pr(data | no effect) rather than $\operatorname{Pr}($ no effect | data).
- P-values are a function of the data (and thus, they are random).
- Power: the probability of rejecting H_{0} when it is false.
- Always look at the confidence interval as well as the P-value.

Example

$$
\begin{array}{lll}
\bar{X}=47.5 & \mathrm{~s}_{\mathrm{A}}=10.5 & \mathrm{n}=6 \\
\bar{Y}=74.3 & \mathrm{~s}_{\mathrm{B}}=20.6 & \mathrm{~m}=9 \\
\mathrm{~s}_{\mathrm{p}}=17.4 & \mathrm{~T}=-2.93 \\
\longrightarrow & \mathrm{P}=2 * \mathrm{pt}(-2.93,6+9-2)=0.011 .
\end{array}
$$

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m) R = sum of ranks for X's (Also known as the Mann-Whitney Test)

X	Y	rank
35.0		1
38.2		2
43.3		3
	46.8	4
	49.7	5
50.0		6
	51.9	7
57.1		8
61.2		9
	74.1	10
	75.1	11
	84.5	12
	90.0	13
	95.1	14
	101.5	15

$R=1+2+3+6+8+9=29$
P -value $=0.026$

Note: The distribution of R (given that X's and Y's have the same dist' n) is calculated numerically

Permutation test

X or Y	group		
X_{1}	1		
X_{2}	1		
\vdots	1		
X_{n}	1	\rightarrow	$\mathrm{~T}_{\text {obs }}$
Y_{1}	2		
Y_{2}	2		
\vdots	2		
Y_{m}	2		

X or Y	group		
X_{1}	2		
X_{2}	2		
\vdots	1		
X_{n}	2	$\rightarrow \mathrm{~T}^{\star}$	
Y_{1}	1		
Y_{2}	2		
\vdots	1		
Y_{m}	1		

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

P-value $=\operatorname{Pr}\left(\left|T^{\star}\right| \geq\left|T_{\text {obs }}\right|\right)$
\longrightarrow Small n \& m: Look at all $\binom{n+m}{n}$ possible shuffles
\longrightarrow Large n \& m : Look at a sample ($\mathrm{w} / \mathrm{repl}$) of 1000 such shuffles
Example data:
All 5005 permutations: $\mathrm{P}=0.015$; sample of 1000 : $\mathrm{P}=0.013$.

Estimating the permutation P-value

Let P be the true P-value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.
$\longrightarrow \hat{\mathrm{P}}=\frac{X}{N} \quad$ where $X \sim \operatorname{Binomial}(\mathrm{~N}, \mathrm{P})$
$\longrightarrow E(\hat{P})=P \quad S D(\hat{P})=\sqrt{\frac{P(1-P)}{N}}$

If the "true" P-value was $\mathrm{P}=5 \%$, and we do $\mathrm{N}=1000$ shuffles:
$\operatorname{SD}(\hat{P})=0.7 \%$.

Summary

The t-test relies on a normality assumption.
If this is a worry, consider:

- Paired data:
- Sign test
- Signed rank test
- Permutation test
- Unpaired data:
- Rank-sum test
- Permutation test
\longrightarrow The crucial assumption is independence!
The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.

Maximum Likelihood Estimation

Estimation

Goal: Estimate a population parameter θ.
Data: $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} \sim$ iid with distribution depending on θ.

If one has many estimators to choose from, pick

- That with the smallest SE, among all unbiased estimators
- That with the smallest RMS error, even if biased
\longrightarrow Sometimes it is not clear how to form even one good estimator.

Maximum likelihood estimation

Likelihood function:

$$
\mathrm{L}(\theta)=\operatorname{Pr}(\text { data } \mid \theta)
$$

Log likelihood:
$l(\theta)=\log \operatorname{Pr}($ data $\mid \theta)$

Maximum likelihood estimate:
Choose, as the estimate of θ, the value of θ for which the likelihood function $L(\theta)$ (or equivalently, the log likelihood function) is maximized.
\longrightarrow You need to solve these equations analytically or numerically.

Example 1

Suppose $X \sim \operatorname{Binomial}(n, p)$.
log likelihood function: $l(p)=\log \left\{\binom{n}{x} p^{x}(1-p)^{(n-x)}\right\}$

$$
=x \log (p)+(n-x) \log (1-p)+\text { constant }
$$

MLE: the obvious thing: $\quad \hat{p}=x / n$

Example 2

Suppose $X_{1}, \ldots, X_{20} \sim$ iid Poisson (λ).
log likelihood function: $l(\lambda)=\log \left\{\prod_{i} e^{-\lambda} \lambda^{\mathrm{x}_{\mathrm{i}}} / \mathrm{x}_{\mathrm{i}}!\right\}$

$$
=\ldots=-20 \lambda+\left(\sum \mathrm{x}_{\mathrm{i}}\right) \log \lambda+\text { constant }
$$

MLE: the obvious thing: $\quad \hat{\lambda}=\bar{x}$

Example 3

Suppose $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \sim \operatorname{iid} \mathrm{N}(\mu, \sigma)$
log likelihood function: $l(\mu, \sigma)=\log \left\{\prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{\mathrm{x}-\mu}{\sigma}\right)^{2}\right]\right\}$
MLEs: almost the obvious things:

$$
\hat{\mu}=\overline{\mathbf{x}} \quad \hat{\sigma}=\sqrt{\sum\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)^{2} / \mathrm{n}}
$$

Example 3: the log likelihood surface

About MLEs

Maximum likelihood estimation is a general procedure for finding a reasonable estimator

- In many cases, the MLE turns out to be the obvious thing.
- MLEs are often very good (but not necessarily the best) possible estimators:
- unbiased or nearly unbiased
- small standard errors
- Sometimes obtaining the MLEs requires hefty computation!

Example 4: ABO blood groups

Phenotype	Genotype	Frequency
O	$O O$	p_{O}^{2}
A	$A A$ or $A O$	$p_{A}^{2}+2 p_{A} p_{O}$
B	$B B$ or $B O$	$p_{B}^{2}+2 p_{B} p_{O}$
$A B$	$A B$	$2 p_{A} p_{B}$

Frequencies under the assumption of Hardy-Weinberg equilibrium.

Example 4: Data

Phenotype	No. subjects	\% subjects
O	117	46.8%
A	98	39.2%
B	29	11.6%
AB	6	2.4%
Total	$\mathbf{2 5 0}$	$\mathbf{1 0 0 \%}$

\longrightarrow What are the estimates of p_{A}, p_{B}, p_{o} ?

Example 4: Estimates

Simple estimates:

$$
\begin{aligned}
& \longrightarrow \tilde{p}_{O}=\sqrt{0.468}=0.684 \\
& \longrightarrow \quad \tilde{p}_{A}^{2}+2 \tilde{p}_{A} 0.684=0.392 \longrightarrow \tilde{p}_{A}=0.243 \\
& \longrightarrow \tilde{p}_{B}=0.024 /\left(2 \tilde{p}_{A}\right)=0.072
\end{aligned}
$$

Log likelihood:
$l\left(\mathrm{p}_{\mathrm{O}}, \mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}\right)=$
$117 \log \left(p_{O}^{2}\right)+98 \log \left(p_{A}^{2}+2 p_{A} p_{O}\right)+29 \log \left(p_{B}^{2}+2 p_{B} p_{O}\right)+6 \log \left(2 p_{A} p_{B}\right)$

Example 5: log likelihood

