
Inference about two groups

Differences between means

Suppose I measure the treatment response for 10 subjects getting

treatment A and 10 subjects getting treatment B.

How different are the responses of the two treatments?

−→ I am not interested in these particular subjects, but in the

treatments generally .
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X −Y

Suppose that

◦ X 1,X 2, . . . ,X n are iid Normal(mean=µA, SD=σ), and

◦ Y 1,Y 2, . . . ,Ym are iid Normal(mean=µB, SD=σ).

Then

−→ E(X − Y ) = E(X ) − E(Y ) = µA − µB

−→ SD(X − Y ) =

√
SD(X )2 + SD(Y )2 =

√(
σ√
n

)2

+

(
σ√
m

)2

= σ

√
1

n
+

1

m

Note: If n = m, then SD(X − Y ) = σ
√

2/n.

Pooled estimate of the population SD

We have two different estimates of the populations’ SD, σ:

σ̂A = SA =
√∑

(X i−X )2

n – 1
σ̂B = SB =

√∑
(Y i−Y )2

m – 1

We can use all of the data together to obtain an improved estimate

of σ, which we call the “pooled” estimate.

σ̂pooled =

√∑
(X i − X )2 +

∑
(Y i − Y )2

n + m − 2

=

√
S2

A(n – 1) + S2
B(m – 1)

n + m − 2

Note: If n = m, then σ̂pooled =

√(
S2

A + S2
B

)
/2



Estimated SE of (X −Y )

ŜD(X − Y ) = σ̂pooled

√
1

n
+

1

m

=

√√√√
[
S2

A(n − 1) + S2
B(m − 1)

n + m − 2

]

·
[

1

n
+

1

m

]

In the case n = m,

ŜD(X − Y ) =

√
S2

A + S2
B

n

CI for the difference between the means

(X − Y ) − (µA − µB)

ŜD(X − Y )
∼ t(df = n + m − 2)

The procedure:

1. Calculate (X − Y ).

2. Calculate ŜD(X − Y ).

3. Find the 97.5 percentile of the t distr’n with n + m – 2 d.f.

−→ t

4. Calculate the interval: (X − Y ) ± t · ŜD(X − Y ).



Example

Treatment A:

2.67 2.86 2.87 3.04 3.09 3.09 3.13 3.27 3.35

n = 9, x̄ ≈ 3.04, sA ≈ 0.214

Treatment B:

3.78 3.06 3.64 3.31 3.31 3.51 3.22 3.67

m = 8, ȳ ≈ 3.44, sB ≈ 0.250

σ̂pooled =

√
s2

A(n − 1) + s2
B(m − 1)

n + m − 2
= . . . ≈ 0.231

ŜD(X − Y ) = σ̂pooled

√
1

n
+

1

m
= . . . ≈ 0.112

97.5 percentile of t(df=15) ≈ 2.13

Example

95% confidence interval:

(3.04 – 3.44) ± 2.13 · 0.112 ≈ – 0.40 ± 0.24 = (– 0.64, – 0.16).
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Example

Treatment A: n = 10

sample mean: x̄ = 55.22

sample SD: sA = 7.64

t value = qt(0.975, 9) = 2.26

−→ 95% CI for µA:

55.22 ± 2.26 × 7.64 /
√

10 = 55.2 ± 5.5 = (49.8, 60.7)

Treatment B: n = 16

sample mean: x̄ = 68.2

sample SD: sB = 18.1

t value = qt(0.975, 15) = 2.13

−→ 95% CI for µB:

68.2 ± 2.13 × 18.1 /
√

16 = 68.2 ± 9.7 = (58.6, 77.9)

Example

σ̂pooled =
√

(7.64)2×(10−1)+(18.1)2×(16−1)
10+16−2

= 15.1

ŜD(X − Y ) = σ̂pooled ×
√

1
n

+ 1
m

= 15.1 ×
√

1
10

+ 1
16

= 6.08

t value: qt(0.975, 10+16-2) = 2.06

−→ 95% confidence interval for µA − µB:

(55.2 – 68.2) ± 2.06 × 6.08 = –13.0 ± 12.6 = (–25.6, –0.5)



Example
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CI for µA ! µB

One problem

What if the two populations really have different SDs, σA and σB?

Suppose that

◦ X 1,X 2, . . . ,X n are iid Normal(µA, σA),

◦ Y 1,Y 2, . . . ,Ym are iid Normal(µB, σB).

Then

SD(X − Y ) =

√
σ2

A

n
+

σ2
B

m
ŜD(X − Y ) =

√
S2

A

n
+
S2

B

m

The problem:

−→
(X − Y ) − (µA − µB)

ŜD(X − Y )
does not follow a t distribution.



An approximation

In the case that σA (= σB:

Let k =

(
s2

A

n
+

s2
B

m

)2

(s2
A/n)

2

n−1
+

(s2
B/m)

2

m−1

Let t" be the 97.5 percentile of the t distribution with k d.f.

−→ Use (X − Y ) ± t" ŜD(X − Y ) as a 95% confidence interval.

Example

k =
[(7.64)2/10 + (18.1)2/16]2

[(7.64)2/10]2

9
+ [(18.1)2/16]2

15

=
(5.84 + 20.6)2

(5.84)2

9
+ (20.6)2

15

= 21.8.

t value = qt(0.975, 21.8) = 2.07.

ŜD(X − Y ) =

√
s2

A

n
+

s2
B

m
=

√
(7.64)2

10
+

(18.1)2

16
= 5.14.

−→ 95% CI for µA − µB:

–13.0 ± 2.07 × 5.14 = –13.0 ± 10.7 = (–23.7, –2.4)



Example
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Prev CI for µA ! µB

New CI for µA ! µB

Degrees of freedom

◦ One sample of size n:

X 1,X 2, . . . ,X n −→ (X − µ)/(S/
√

n) ∼ t(df = n – 1)

◦ Two samples, of size n and m:

X 1,X 2, . . . ,X n

Y 1,Y 2, . . . ,Ym

−→
(X − Y ) − (µA − µB)

σ̂pooled

√
1
n

+ 1
m

∼ t(df = n + m – 2)

What are these “degrees of freedom”?



Degrees of freedom

The degrees of freedom concern our estimate of the population

standard deviation

We use the residuals (X 1 − X ), . . . , (X n − X ) to estimate σ.

−→ But we really only have n – 1 independent data points (“de-

grees of freedom”), since
∑

(X i − X ) = 0.

In the two-sample case, we use (X 1 − X ), (X 2 − X ), . . . , (X n − X )
and (Y 1 − Y ), . . . , (Ym − Y ) to estimate σ.

−→ But
∑

(X i−X ) = 0 and
∑

(Y i−Y ) = 0, and so we really have

just n + m – 2 independent data points.

Testing the difference between two means

Treatment A: X 1, . . . ,X n ∼ iid Normal(µA, σA)

Treatment B: Y 1, . . . ,Ym ∼ iid Normal(µB, σB)

Test H0 : µA = µB vs Ha : µA (= µB

Test statistic: T =
X − Y

√
S2

A

n
+ S2

B

m

Reject H0 if |T| > tα/2 t" 2! t" 2  

2.5% 2.5%

If H0 is true, then T follows (approximately) a t distr’n with k d.f.

k according to the nasty formula shown previously



Example

85 90 95 100 105 110 115

A

B

Treatment A: n = 12, sample mean = 103.7, sample SD = 7.2

Treatment B: n = 9, sample mean = 97.0, sample SD = 4.5

ŜD(X − Y ) =
√

7.22

12
+ 4.52

9
= 1.80

T = (103.7 – 97.0)/1.80 = 2.60.

k = . . . = 18.48, so C = 2.10. Thus we reject H0 at α = 0.05.

Always give a confidence interval!

40 50 60 70 80

A

B

P = 0.019

95% CI: (–34.9, –1.2)

40 50 60 70 80

A

B

P = 0.019

95% CI: (–13.6, –0.5)

−→ Make a statistician happy: draw a picture of the data.



Good plot, bad plot
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What to say

When rejecting H0:

• The difference is statistically significant.

• The observed difference can not reasonably be explained by

chance variation.

When failing to reject H0:

• There is insufficient evidence to conclude that µA (= µB.

• The difference is not statistically significant.

• The observed difference could reasonably be the result of

chance variation.



What about a different significance level?

Recall T = 2.60 k = 18.48

If α = 0.10, C = 1.73 =⇒ Reject H0

If α = 0.05, C = 2.10 =⇒ Reject H0

If α = 0.01, C = 2.87 =⇒ Fail to reject H0

If α = 0.001, C = 3.90 =⇒ Fail to reject H0

P-value: the smallest α for which you would still reject H0 with the

observed data.

With these data, P = 2*(1-pt(2.60,18.48)) = 0.018.

Another example

Suppose I measure the blood pressure of 6 subjects on a low salt

diet and 6 subjects on a high salt diet. We wish to prove that the

high salt diet causes an increase in blood pressure.

40 50 60 70 80

A

B

We imagine X 1, . . . ,X n ∼ iid Normal(µL,σL) low salt

Y 1, . . . ,Ym ∼ iid Normal(µH,σH) high salt

We want to test H0 : µL = µH versus Ha : µL < µH

−→ Are the data compatible with H0?



A one-tailed test

Test statistic: T =
X − Y

ŜD(X − Y )

Since we seek to prove that µL is smaller than µH, only large neg-

ative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr( T < C | µL = µH ) = α.

C

5%

vs

C!C  

2.5% 2.5%

The example

40 50 60 70 80

A

B

Low salt: n = 6; sample mean = 51.0, sample SD = 10.0

High salt: n = 6; sample mean = 69.1, sample SD = 15.1

x̄ − ȳ = –18.1 ŜD(X − Y ) = 7.40 T = –18.1 / 7.40 = –2.44

k = 8.69. If α = 0.05, then C = –1.84.

Since T < C, we reject H0 and conclude that µL < µH.

Note: P-value = pt(-2.44, 8.69) = 0.019.



Example

Suppose I do some pre/post measurements.

I make some measurement on each of 5 subjects before and after

some treatment.

Question: Does the treatment have any effect?

Subject 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0

After 17.8 24.1 31.9 28.6 40.0

15 20 25 30 35 40

Before

After

Measurements

0 5 10 15

Differences

Pre/post example

In this sort of pre/post measurement example, study the differ-

ences as a single sample.

Why? The pre/post measurements are likely associated, and as

a result one can more precisely learn about the effect of

the treatment.

Subject 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0

After 17.8 24.1 31.9 28.6 40.0

Difference –0.8 9.8 10.5 9.3 16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = . . . = (1.4, 16.5)

P-value for test of µbefore = µafter : 0.03.



Summary

• Tests of hypotheses → answering yes/no questions regarding

population parameters.

• There are two kinds of errors:

◦ Type I: Reject H0 when it is true.

◦ Type II: Fail to reject H0 when it is false.

• If we fail to reject H0, we do not “accept H0”.

• P-value: the probability, if H0 is true, of obtaining data as ex-

treme as was observed. Pr( data | no effect ) rather than Pr( no effect | data ).

• P-values are a function of the data (and thus, they are random).

• Power: the probability of rejecting H0 when it is false.

• Always look at the confidence interval as well as the P-value.

Example

40 50 60 70 80 90 100

X

Y

X = 47.5 sA = 10.5 n = 6

Y = 74.3 sB = 20.6 m = 9

sp = 17.4 T = –2.93

−→ P = 2*pt(-2.93,6+9-2) = 0.011.



Wilcoxon rank-sum test

Rank the X’s and Y’s from smallest to largest (1, 2, . . . , n+m)

R = sum of ranks for X’s (Also known as the Mann-Whitney Test)

X Y rank

35.0 1

38.2 2

43.3 3

46.8 4

49.7 5

50.0 6

51.9 7

57.1 8

61.2 9

74.1 10

75.1 11

84.5 12

90.0 13

95.1 14

101.5 15

R = 1 + 2 + 3 + 6 + 8 + 9 = 29

P-value = 0.026

use wilcox.test()

Note: The distribution of R (given

that X’s and Y’s have the same

dist’n) is calculated numerically

Permutation test

X or Y group

X 1 1

X 2 1
... 1

X n 1 → Tobs

Y 1 2

Y 2 2
... 2

Ym 2

X or Y group

X 1 2

X 2 2
... 1

X n 2 → T"

Y 1 1

Y 2 2
... 1

Ym 1

Group status shuffled

Compare the observed t-statistic to the distribution obtained by

randomly shuffling the group status of the measurements.



Permutation distribution

!4 !3 !2 !1 0 1 2 3 4 5 6 7

P-value = Pr(|T"| ≥ |Tobs|)

−→ Small n & m: Look at all
(

n+m
n

)
possible shuffles

−→ Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:

All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.

Estimating the permutation P-value

Let P be the true P-value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after

shuffling is bigger or equal to the observed statistic.

−→ P̂ = X
N

where X ∼ Binomial(N,P)

−→ E(P̂) = P SD(P̂) =
√

P(1−P)
N

If the “true” P-value was P = 5%, and we do N=1000 shuffles:

SD(P̂) = 0.7%.



Summary

The t-test relies on a normality assumption.

If this is a worry, consider:

• Paired data:

◦ Sign test

◦ Signed rank test

◦ Permutation test

• Unpaired data:

◦ Rank-sum test

◦ Permutation test

−→ The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often

closely approximated by a t distribution is good support for just

doing t-tests.

Maximum Likelihood Estimation



Estimation

Goal: Estimate a population parameter θ.

Data: X1, X2, . . . , Xn ∼ iid with distribution depending on θ.

If one has many estimators to choose from, pick

• That with the smallest SE, among all unbiased estimators

• That with the smallest RMS error, even if biased

−→ Sometimes it is not clear how to form even one good estimator.

Maximum likelihood estimation

Likelihood function: L(θ) = Pr(data | θ)

Log likelihood: l(θ) = log Pr(data | θ)

Maximum likelihood estimate:

Choose, as the estimate of θ, the value of θ for which the likeli-

hood function L(θ) (or equivalently, the log likelihood function) is

maximized.

−→ You need to solve these equations analytically or numerically.



Example 1

Suppose X ∼ Binomial(n, p).

log likelihood function: l(p) = log
{(

n
x

)
px (1 − p)(n−x)

}

= x log(p)+(n−x) log(1−p)+constant

MLE: the obvious thing: p̂ = x/n
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MLE = 0.22

Example 2

Suppose X1, . . . , X20 ∼ iid Poisson(λ).

log likelihood function: l(λ) = log
{∏

i e
−λ λxi/xi!

}

= . . . = −20λ + (
∑

xi) logλ + constant

MLE: the obvious thing: λ̂ = x̄
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Example 3

Suppose X1, . . . , Xn ∼ iid N(µ, σ)

log likelihood function: l(µ, σ) = log
{∏

i
1

σ
√

2π
exp

[
−1

2

(
x−µ
σ

)2
]}

MLEs: almost the obvious things:

µ̂ = x̄ σ̂ =
√∑

(xi − x̄)2/n

Example 3: the log likelihood surface
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About MLEs

Maximum likelihood estimation is a general procedure for finding

a reasonable estimator

• In many cases, the MLE turns out to be the obvious thing.

• MLEs are often very good (but not necessarily the best) possi-

ble estimators:

◦ unbiased or nearly unbiased

◦ small standard errors

• Sometimes obtaining the MLEs requires hefty computation!

Example 4: ABO blood groups

Phenotype Genotype Frequency

O OO p2
O

A AA or AO p2
A + 2pApO

B BB or BO p2
B + 2pBpO

AB AB 2pApB

Frequencies under the assumption of Hardy-Weinberg equilibrium.



Example 4: Data

Phenotype No. subjects % subjects

O 117 46.8%

A 98 39.2%

B 29 11.6%

AB 6 2.4%

Total 250 100%

−→ What are the estimates of pA, pB, pO?

Example 4: Estimates

Simple estimates:

−→ p̃O =
√

0.468 = 0.684

−→ p̃
2
A + 2p̃A0.684 = 0.392 −→ p̃A = 0.243

−→ p̃B = 0.024/(2p̃A) = 0.072

Log likelihood:

l(pO, pA, pB) =

117 log(p2
O)+98 log(p2

A +2pApO)+29 log(p2
B +2pBpO)+6 log(2pApB)



Example 5: log likelihood
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MLE

p0 = 0.690

pA = 0.237

pB = 0.073


