Inference about two groups

Differences between means

Suppose | measure the treatment response for 10 subjects getting
treatment A and 10 subjects getting treatment B.

How different are the responses of the two treatments?

— | am not interested in these particular subjects, but in the
treatments generally.
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X-Y

Suppose that

o X1,Xo2,..., X, areiid Normal(mean=pua, SD=0), and
oY1, Yo, ..., Ymn areiid Normal(mean=ug, SD=0).
Then

— E(X-Y)=E(X) —E(Y) = ua— yig

— SD(X-Y)=1/SD(X)? + SD(V)? =

() G lhem

Note: If n =m, then SD(X — Y) = ov2/n.

Pooled estimate of the population SD

We have two different estimates of the populations’ SD, o

P(Xi—X)?
n-1

o = Sg =

op = Sa =

We can use all of the data together to obtain an improved estimate
of o, which we call the “pooled” estimate.

N \/z<xi—7>2+z<yi—7>2
Opooled =

n+m-—2

B \/si<n—1>+s§<m—1>

N n+m—2

Note: If n =m, then 6po0led = \/(Si + Sé) /2



Estimated SE of (X - Y)

— = A1

~ San—1)+S5m—-1)| [1 1
-“A mo 2 Hﬁ*m]

In the case n = m,

2 2
SD(Y—V):\/SA:SB

Cl for the difference between the means

(X =Y) = (ua— )
SD(X -Y)

~tdf=n+m-2)

The procedure:

1. Calculate (X — Y).

2. Calculate SD(X — Y).

3. Find the 97.5 percentile of the t distr’'n withn + m — 2 d.f.

RN t

4. Calculate the interval: (X —Y) + t-SD(X — ).



Example

Treatment A:
2.67 2.86 2.87 3.04 3.09 3.09 3.13 3.27 3.35

n=9, x ~ 3.04, sp ~ 0.214

Treatment B:
3.78 3.06 3.64 3.31 3.31 3.51 3.22 3.67

m =8, y ~ 3.44, sg ~ 0.250

) sa(n—1)+s3(m—1
Upooled_\/A( nlm_B; | ~0231

1 1

—+—=...~0.112
n m

SD(Y - 7) = (}pooled

97.5 percentile of t(df=15) ~ 2.13

Example

95% confidence interval:
(3.04-3.44) £2.13-0.112 ~ —-0.40£0.24 = (-0.64,-0.16).

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0



Example

Treatment A: n=10
sample mean: x = 55.22
sample SD: sp = 7.64
tvalue=qt(0.975, 9) =2.26

— 95% ClI for pa:
55.22 £ 2.26 x 7.64/+/10 = 552+55 = (49.8,60.7)

Treatment B: n=16
sample mean: x = 68.2
sample SD: sg = 18.1
tvalue=qt(0.975, 15) =2.13

— 95% Cl for ug:

68.2 213 x 18.1/y/16 = 682+97 = (58.6,77.9)

Example

(7.64)2x(10—1)+(18.1)2x(16—1) _
Opooled = \/ 10+16 2 =151

S/E)(Y - 7) = Opooled X

1
n

tvalue: gt (0.975, 10+16-2) =2.06

— 95% confidence interval for ja — ug:

(55.2 — 68.2) + 2.06 x 6.08 = -13.0+ 12.6 = (-25.6,-0.5)
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One problem

What if the two populations really have different SDs, oa and og?
Suppose that

o X1, Xo,..., Xy areiid Normal(ua, oa),

oYq,Yo, ..., Yy areiid Normal(ug, og).

Then

2 o _ 2
Vy_ /%, B ¥ _ vy _ (| SA
n

2
SD(X —Y)=y/-2+28B SDIX-Y) = +%

The problem:

(X=Y) — (ta — pe)

—— does not follow a t distribution.
SD(X —Y)




An approximation

In the case that o # op:

2, %\°
Letk = (” i m>
(s3/n)°  (sB/m)"

n—1 m—1

Let t* be the 97.5 percentile of the t distribution with k d.f.

— Use (X-Y) + t*SD(X — Y) as a 95% confidence interval.

Example

(7.64)2/10 + (18.1)2/16]2  (5.84 + 20.6)?

(7.642/102 | [(18.1)2/162 (5842  (20.6)2
9 + 15 s T 15

=21.8.

k=

tvalue=qt(0.975, 21.8) =2.07.

2 2
SDIX V)= \/S S8 \/764 181)—5.14.

— 95% Cl for ua — ug:

-13.0 £ 2.07 x 5.14 = -13.0+10.7 = (-23.7,-2.4)
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Degrees of freedom

o One sample of size n:

X1,X2,...,Xn — (7—,&)/(8/\/ﬁ> Nt(df=n—1)

o Two samples, of size n and m:

X17X27"'7Xn (7—7>—<ILLA—ILLB>

A /1 1
Y17 Y27"'7Ym O'pooled ﬁ—|—m

~tdf=n+m-2)

What are these “degrees of freedom”?



Degrees of freedom

The degrees of freedom concern our estimate of the population
standard deviation

We use the residuals (X1 — X), ..., (Xn — X) to estimate o.

— But we really only have n — 1 independent data points (“de-
grees of freedom”), since > (X; — X) = 0.

In the two-sample case, we use (X1 — X),(Xo — X),...,(Xn — X)

and (Y1 —Y),...,(Ym— Y) to estimate o.

— But>(Xi—X)=0and > (Y;—Y) =0, and so we really have
just n + m — 2 independent data points.

Testing the difference between two means

Treatment A: Xy,..., Xn ~ iid Normal(ua, oa)

Treatment B: Y4,..., Y ~ iid Normal(ug, o)

Test Ho:pa=pp VS Ha:pa # g

X-Y
Test statistic: T= ———

Si | S8

T m

Reject Ho if [T| > t,/» ' e taro

If Hop is true, then T follows (approximately) a t distr’'n with k d.f.

k according to the nasty formula shown previously



Treatment A: n = 12, sample mean = 103.7, sample SD = 7.2

Treatment B: n =9, sample mean = 97.0, sample SD =4.5

SD(X —Y) = /Z& + 45 - 1.80
T = (103.7 — 97.0)/1.80 = 2.60.

k=...=18.48, so C =2.10. Thus we reject Hy at « = 0.05.

Always give a confidence interval!

i I P=0.019
i ° "l 95% Cl: (=34.9, -1.2)
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A SCAA P =0.019
j 95% Cl: (-13.6, —0.5)
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— Make a statistician happy: draw a picture of the data.



Good plot, bad plot

Bad plot Good plot
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What to say

When rejecting Ho:
e The difference is statistically significant.

e The observed difference can not reasonably be explained by
chance variation.

When failing to reject Hp:

e There is insufficient evidence to conclude that s # .
e The difference is not statistically significant.

e The observed difference could reasonably be the result of
chance variation.



What about a different significance level?

Recall T =2.60 k=18.48

If «=0.10, C=1.73 = Reject Hy
If a=0.05, C=2.10 — Reject Hy
If «=0.01, C=2.87 — Fail to reject Hy
If «=0.001, C=3.90 = Fail to reject Hy

P-value: the smallest « for which you would still reject Hy with the
observed data.

With these data, P = 2% (1-pt(2.60,18.48)) =0.018.

Another example

Suppose | measure the blood pressure of 6 subjects on a low salt
diet and 6 subjects on a high salt diet. We wish to prove that the
high salt diet causes an increase in blood pressure.

We imagine Xj,..., X, ~ iid Normal(u,, 0.) owsat
Yi,..., Ym ~iid Normal(uy, oy) high sait

We want to test Hg : 1. = puy versus Ha @ < py

—— Are the data compatible with Hy?



A one-tailed test

X-Y
Test statistic: T= ——
SD(X —Y)

Since we seek to prove that y, is smaller than py, only large neg-
ative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose Csothat Pr(T < C | . = pun ) = .

VS
5%

Low salt: n = 6; sample mean = 51.0, sample SD =10.0
High salt: n = 6; sample mean = 69.1, sample SD = 15.1
X—y=-181 SD(X-Y)=7.40 T=-18.1/7.40=-2.44

k =8.69. If &« =0.05, then C =—-1.84.
Since T < C, we reject Hp and conclude that i, < .
Note: P-value = pt(-2.44, 8.69) =0.019.



Example

Suppose | do some pre/post measurements.

| make some measurement on each of 5 subjects before and after
some treatment.

Question: Does the treatment have any effect?

‘Subject 1 2 3 4 5
Before [18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0

Before o o ©° o
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Measurements Differences

Pre/post example

In this sort of pre/post measurement example, study the differ-
ences as a single sample.

Why? The pre/post measurements are likely associated, and as
a result one can more precisely learn about the effect of
the treatment.

Subject 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0
Difference —0.8 9.8 10.5 9.3 16.0

n = 5; mean difference = 8.96; SD difference = 6.08.
95% CI for underlying mean difference =...= (1.4, 16.5)

P-value for test of tpefore = ftafter : 0.03.



Summary

e Tests of hypotheses — answering yes/no questions regarding
population parameters.

e There are two kinds of errors:

o Type I: Reject Hp when it is true.
o Type II: Fail to reject Hyp when it is false.

o If we fail to reject Hy, we do not “accept Hy”.

e P-value: the probability, if Hy is true, of obtaining data as ex-
treme as was observed. Pr( data | no effect ) rather than Pr( no effect | data ).

e P-values are a function of the data (and thus, they are random).
e Power: the probability of rejecting Hy when it is false.

e Always look at the confidence interval as well as the P-value.
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75 sp=105 n=6
=743 sg=206 m=9

sp=174 T=-293

— P=2xpt(-2.93,6+9-2) =0.011.



Wilcoxon rank-sum test

Rank the X’s and Y’s from smallest to largest (1, 2, ..., n+m)

R = sum of ranks for X’s

(Also known as the Mann-Whitney Test)

X Y rank R=1+2+3+6+8+9=29
35.0 1
P : P-value = 0.026
46.8 4
497 5
50.0 6
519 7
57.1 8 Note: The distribution of R (given
61.2 9 that X’s and Y’s have the same
741 10 e ,
751 11 dist’n) is calculated numerically
845 12
90.0 13
951 14
1015 15
Permutation test
XorY group XorY group
X1 1 X1 2
X> 1 X> 2
; 1 : 1
Xn 1 — TObS Xn 2 — T*
Yi 2 Y4 1
Y2 2 Yz 2
; 2 ; 1

Group status shuffled

Compare the observed t-statistic to the distribution obtained by
randomly shuffling the group status of the measurements.



Permutation distribution

T T T T T T T T T T T
-4 -3 -2 -1 0 1 2 3 4 5 6 7

P-value = Pr(|T*| > |Tops|)

n+m
n

— Small n & m: Look at all (") possible shuffles

—— Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:
All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.

Estimating the permutation P-value

Let P be the true P-value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after
shuffling is bigger or equal to the observed statistic.

— P=2% where X ~ Binomial(N,P)

If the “true” P-value was P = 5%, and we do N=1000 shuffles:
SD(P) = 0.7%.



Summary

The t-test relies on a normality assumption.
If this is a worry, consider:

e Paired data:
o Sign test
o Signed rank test
o Permutation test
e Unpaired data:

o Rank-sum test
o Permutation test

—— The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often
closely approximated by a t distribution is good support for just
doing t-tests.

Maximum Likelihood Estimation



Estimation

Goal: Estimate a population parameter 6.

Data: X1, Xo, ..., X, ~ iid with distribution depending on 6.

If one has many estimators to choose from, pick

e That with the smallest SE, among all unbiased estimators

e That with the smallest RMS error, even if biased

— Sometimes it is not clear how to form even one good estimator.

Maximum likelihood estimation

Likelihood function: L(¢) = Pr(data | 9)

Log likelihood: [(0) = log Pr(data | 9)

Maximum likelihood estimate:

Choose, as the estimate of 4, the value of ¢ for which the likeli-
hood function L(¢) (or equivalently, the log likelihood function) is
maximized.

— You need to solve these equations analytically or numerically.



Example 1

Suppose X ~ Binomial(n, p).

log likelihood function: (p) =log {(}) p* (1 — p)" >}
= x log(p)+(n—x) log(1—p)-+constant

MLE: the obvious thing:  p =x/n

n=100, x=22
8 -4+
o
£
° -6 MLE = 0.22
g -8+
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Suppose Xj, ..., Xoo ~ iid Poisson(\).

log likelihood function: () =log {I], e X*/xi!}
=...= =20\ + (D> _Xx) log\ + constant

MLE: the obvious thing: )\ =x

n=20, mean=1.5

_5 —
~10

MLE =1.5
-15

-20 —

log likelihood
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Example 3

Suppose X1, ..., Xy ~iid N(u, o)

log likelihood function: 1(u, o) = log {Hi —= eXp [—% (X?T“)z} }

MLEs: almost the obvious things:

=% o= \/S—x7/n

Example 3: the log likelihood surface

n=100




About MLEs

Maximum likelihood estimation is a general procedure for finding
a reasonable estimator

¢ In many cases, the MLE turns out to be the obvious thing.

e MLEs are often very good (but not necessarily the best) possi-
ble estimators:

o unbiased or nearly unbiased
o small standard errors

e Sometimes obtaining the MLEs requires hefty computation!

Example 4: ABO blood groups

Phenotype Genotype Frequency

o) 00 p5

A AA or AO P2 + 2p,Po
B BB or BO P2 + 2pgPo
AB AB 2pP.Ps

Frequencies under the assumption of Hardy-Weinberg equilibrium.



Example 4: Data

Phenotype No. subjects % subjects

O 117 46.8%
A 98 39.2%

B 29 11.6%
AB 6 2.4%
Total 250 100%

— What are the estimates of p,, pg, Po?

Example 4: Estimates

Simple estimates:

— P =+/0.468 = 0.684
— p2+2p,0.684=0.392 — p, =0.243

— pg =0.024/(2p,) = 0.072

Log likelihood:

l<p07 pA7 pB) =
117 log(p3) +98 log(pZ +2p,po) +29 log(p3 +2pgPe) + 6 10g(2p,Ps)



Example 5: log likelihood
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