Goodness of Fit

Goodness of fit - 2 classes

A B 78 22

→ Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing $p_A = 0.75!$

- Exact p-value
- Exact confidence interval
- Normal approximation

Goodness of fit - 3 classes

AA	AB	BB
35	43	22

→ Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

- Imagine an urn with k types of balls.
- Let p_i denote the proportion of type i.
- Draw n balls with replacement.
- Outcome: (n_1,n_2,\ldots,n_k) , with $\sum_i n_i = n$, where n_i is the no. balls drawn that were of type i.

$$\begin{array}{ll} \longrightarrow & P(X_1 = n_1, \ldots, X_k = n_k) = \frac{n!}{n_1! \times \cdots \times n_k!} \ p_1^{n_1} \times \cdots \times p_k^{n_k} \\ & \text{if} \quad 0 \leq n_i \leq n, \quad \sum_i n_i = n \end{array}$$

Otherwise $P(X_1=n_1,...,X_k=n_k)=0$.

Let $(p_1, p_2, p_3) = (0.25, 0.50, 0.25)$ and n = 100.

$$P(X_1=35, X_2=43, X_3=22) = \frac{100!}{35! \ 43! \ 22!} \ 0.25^{35} \ 0.50^{43} \ 0.25^{22}$$
$$\approx 7.3 \times 10^{-4}$$

Rather brutal, numerically speaking.

→ Take logs (and use a computer).

Goodness of fit test

We observe $(n_1, n_2, n_3) \sim \text{Multinomial}(n, p = \{p_1, p_2, p_3\}).$

We seek to test $H_0: p_1=0.25, p_2=0.5, p_3=0.25.$ versus $H_a: H_0$ is false.

We need two things:

- → A test statistic.
- The null distribution of the test statistic.

The likelihood-ratio test (LRT)

Back to the first example:

 $\text{Test} \quad \ \ \, H_0: (p_{_{\!A}},p_{_{\!B}}) = (\pi_{_{\!A}},\pi_{_{\!B}}) \quad \text{ versus } \quad \ \, H_a: (p_{_{\!A}},p_{_{\!B}}) \neq (\pi_{_{\!A}},\pi_{_{\!B}}).$

 \longrightarrow MLE under H_a : $\hat{p}_A = n_A/n$ where $n = n_A + n_B$.

Likelihood under H_a : $L_a = Pr(n_A|p_A = \hat{p}_A) = \binom{n}{n_A} \times \hat{p}_A^{n_A} \times (1 - \hat{p}_A)^{n_A}$

 $\label{eq:Likelihood under H0: L0 = Pr(n_A|p_A = \pi_A) = \binom{n}{n_A} \times \pi_A^{n_A} \times (1-\pi_A)^{n-n_A}}$ Likelihood under H0:

- \longrightarrow Likelihood ratio test statistic: LRT = 2 \times In (L_a/L₀)
- Some clever people have shown that if H_0 is true, then LRT follows a $\chi^2(df=1)$ distribution (approximately).

Likelihood-ratio test for the example

We observed $n_A = 78$ and $n_B = 22$.

 $H_0: (p_A, p_B) = (0.75, 0.25)$

 $H_a:(p_{_{\!A}},p_{_{\!B}})\neq \text{(0.75,0.25)}$

 $L_a = Pr(n_A = 78 \mid p_A = 0.78) = \binom{100}{78} \times 0.78^{78} \times 0.22^{22} = 0.096.$

 $L_0 = Pr(n_{\text{A}} = 78 \mid p_{\text{A}} = 0.75) = \binom{100}{78} \times 0.75^{78} \times 0.25^{22} = 0.075.$

 \longrightarrow LRT = 2 × In (L_a/L₀) = 0.49.

Using a χ^2 (df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.

Null distribution

A little math ...

$$n=n_{\text{A}}+n_{\text{B}}, \quad n_{\text{A}}^0=\text{E}[n_{\text{A}}\mid H_0]=n\times\pi_{\text{A}}, \quad n_{\text{B}}^0=\text{E}[n_{\text{B}}\mid H_0]=n\times\pi_{\text{B}}.$$

Then
$$L_a/L_0 = \left(\frac{n_A}{n_A^0}\right)^{n_A} \times \left(\frac{n_B}{n_B^0}\right)^{n_B}$$

Or equivalently
$$LRT = 2 \times n_A \times In \left(\frac{n_A}{n_A^0}\right) + 2 \times n_B \times In \left(\frac{n_B}{n_B^0}\right).$$

 \longrightarrow Why do this?

Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT =
$$2 \times \sum_{i=1}^{k} n_i \times \ln \left(\frac{n_i}{n_i^0} \right)$$

If H₀ is true, LRT
$$\sim \chi^2$$
(df=k-1)

The chi-square test

There is an alternative technique. The test is called the chi-square test, and has the greater tradition in the literature. For two groups, calculate the following:

$$X^2 = \frac{(n_A - n_A^0)^2}{n_A^0} + \frac{(n_B - n_B^0)^2}{n_B^0}$$

 \longrightarrow If H₀ is true, then X^2 is a draw from a χ^2 (df=1) distribution (approximately).

In the first example we observed $n_A = 78$ and $n_B = 22$. Under the null hypothesis we have $n_A^0 = 75$ and $n_B^0 = 25$. We therefore get

$$X^2 = \frac{(78-75)^2}{75} + \frac{(22-25)^2}{25} = 0.12 + 0.36 = 0.48.$$

This corresponds to a p-value of 0.49. We therefore have no evidence against the hypothesis $(p_A, p_B) = (0.75, 0.25)$.

→ Note: using the likelihood ratio test we got a p-value of 0.48.

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more than just two groups.

If we have k groups, the chi-square test statistic we use is

$$X^2 = \sum_{i=1}^{k} \frac{(n_i - n_i^0)^2}{n_i^0} \sim \chi^2 (df = k-1)$$

Test statistics

Let n_i^0 denote the expected count in group i if H_0 is true.

LRT statistic

$$LRT = 2 \ ln \ \left\{ \frac{Pr(data \mid p = MLE)}{Pr(data \mid H_0)} \right\} = \ldots = 2 \ \sum_i n_i \ ln(n_i/n_i^0)$$

 χ^2 test statistic

$$X^2 = \sum \frac{(observed - expected)^2}{expected} = \sum_i \frac{(n_i - n_i^0)^2}{n_i^0}$$

Null distribution of test statistic

What values of LRT (or X²) should we expect, if H₀ were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations
 - If the sample size n is large, we have $LRT \sim \chi^2(k-1) \ \ \text{and} \ \ \ X^2 \sim \chi^2(k-1)$

Recommendation

For either the LRT or the χ^2 test:

- The null distribution is approximately $\chi^2(k-1)$ if the sample size is large.
- The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is > 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not $p_{AA} = 0.25$, $p_{AB} = 0.5$, $p_{BB} = 0.25$

But rather something like:

$$p_{AA} = f^2, \ p_{AB} = 2f(1-f), \ p_{BB} = (1-f)^2 \qquad \text{for some f.}$$

For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus.

Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

Example data:

AA	AB	BB
5	20	75

Another example

ABO blood groups \longrightarrow 3 alleles A, B, O.

Phenotype A genotype AA or AO

B genotype BB or BO

AB genotype AB

O genotype O

Allele frequencies: f_A , f_B , f_O (Note that $f_A + f_B + f_O = 1$)

Under Hardy-Weinberg equilibrium, we expect

$$p_{A} = f_{A}^{2} + 2f_{A}f_{O} \quad p_{B} = f_{B}^{2} + 2f_{B}f_{O} \quad p_{AB} = 2f_{A}f_{B} \quad p_{O} = f_{O}^{2}$$

Example data: O A B AB 104 91 36 19

LRT for example 1

Data: $(n_{AA}, n_{AB}, n_{BB}) \sim Multinomial(n, \{p_{AA}, p_{AB}, p_{BB}\})$

We seek to test whether the data conform reasonably to

$$H_0 \colon \ p_{AA} = f^2, \ p_{AB} = 2f(1-f), \ p_{BB} = (1-f)^2 \qquad \text{for some f.}$$

General MLEs:

$$\hat{p}_{AA}=n_{AA}/n,\;\hat{p}_{AB}=n_{AB}/n,\;\hat{p}_{BB}=n_{BB}/n$$

MLE under H₀:

$$\hat{f} = (n_{AA} + n_{AB}/2)/n \ \longrightarrow \ \tilde{p}_{AA} = \hat{f}^2, \\ \tilde{p}_{AB} = 2\,\hat{f}\,(1-\hat{f}), \\ \tilde{p}_{BB} = (1-\hat{f})^2$$

$$\label{eq:loss} \text{LRT statistic:} \quad \text{LRT} = 2 \times \text{ In } \left\{ \frac{Pr(n_{AA}, n_{AB}, n_{BB} \mid \hat{p}_{AA}, \hat{p}_{AB}, \hat{p}_{BB})}{Pr(n_{AA}, n_{AB}, n_{BB} \mid \tilde{p}_{AA}, \tilde{p}_{AB}, \tilde{p}_{BB})} \right\}$$

LRT for example 2

Data: $(n_O, n_A, n_B, n_{AB}) \sim Multinomial(n, \{p_O, p_A, p_B, p_{AB}\})$

We seek to test whether the data conform reasonably to

$$\begin{split} &H_0\colon\; p_A=f_A^2+2f_Af_O,\, p_B=f_B^2+2f_Bf_O,\, p_{AB}=2f_Af_B,\, p_O=f_O^2\\ &\text{for some }f_O,f_A,f_B,\, \text{where }f_O+f_A+f_B=1. \end{split}$$

General MLEs: $\hat{p}_{O}, \hat{p}_{A}, \hat{p}_{B}, \hat{p}_{AB}$, like before.

MLE under H_0 : Requires numerical optimization Call them $(\hat{f}_O, \hat{f}_A, \hat{f}_B) \longrightarrow (\tilde{p}_O, \tilde{p}_A, \tilde{p}_B, \tilde{p}_{AB})$

$$LRT \ statistic: \qquad LRT = 2 \times \ In \ \left\{ \frac{Pr(n_O, n_A, n_B, n_{AB} \mid \hat{p}_O, \hat{p}_A, \hat{p}_B, \hat{p}_{AB})}{Pr(n_O, n_A, n_B, n_{AB} \mid \tilde{p}_O, \tilde{p}_A, \tilde{p}_B, \tilde{p}_{AB})} \right\}$$

χ^2 test for these examples

- Obtain the MLE(s) under H₀.
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H₀.
- Calculate $X^2 = \sum \frac{(observed expected)^2}{expected}$

Null distribution for these cases

- Computer simulation (with one wrinkle)
 - Simulate data under H₀ (plug in the MLEs for the observed data)
 - Calculate the MLE with the simulated data
 - Calculate the test statistic with the simulated data
 - Repeat many times
- Asymptotic approximation
 - \circ Under H₀, if the sample size, n, is large, both the LRT statistic and the χ^2 statistic follow, approximately, a χ^2 distribution with k s 1 degrees of freedom, where s is the number of parameters estimated under H₀.
 - \circ Note that s = 1 for example 1, and s = 2 for example 2, and so df = 1 for both examples.

Example 1

Example data: AA AB BB 5 20 75

MLE: $\hat{f} = (5 + 20/2) / 100 = 15\%$

Expected counts: 2.25 25.5 72.25

Test statistics: LRT statistic = 3.87 $X^2 = 4.65$

Asymptotic $\chi^2(df=1)$ approx'n: $P\approx 4.9\%$ $P\approx 3.1\%$

10,000 computer simulations: $P \approx 8.2\%$ $P \approx 2.4\%$

Est'd null dist'n of LRT statistic

Est'd null dist'n of chi-square statistic

Example 2

Example data:

0	Α	В	AB
104	91	36	19

MLE: $\hat{f}_O \approx$ 62.8%, $\hat{f}_A \approx$ 25.0%, $\hat{f}_B \approx$ 12.2%.

Expected counts: 98.5 94.2 42.0 15.3

Test statistics: LRT statistic = $1.99 ext{ X}^2 = 2.10$

Asymptotic $\chi^2(df=1)$ approx'n: $P\approx 16\%$ $P\approx 15\%$

10,000 computer simulations: $P \approx 17\%$ $P \approx 15\%$

Est'd null dist'n of LRT statistic

Est'd null dist'n of chi-square statistic

Example 3

Data on number of sperm bound to an egg:

→ Do these follow a Poisson distribution?

MLE:

$$\hat{\lambda}$$
 = sample average = (0 \times 26 + 1 \times 4 + . . . + 5 \times 1) / 38 \approx 0.71

Expected counts
$$\;\longrightarrow\; n_i^0 = n \times e^{-\hat{\lambda}}\; \hat{\lambda}^i \;/\; i!$$

0 2 3 5 1 observed 26 2 1 4 4 1 4.7 expected 18.7 13.3 1.1 0.2 0.0

$$X^2 = \sum \frac{(obs-exp)^2}{exp} = \ldots = 42.8$$

LRT =
$$2 \sum obs log(obs/exp) = ... = 18.8$$

Compare to
$$\chi^2(df = 6 - 1 - 1 = 4)$$

P-value =
$$1 \times 10^{-8} (\chi^2)$$
 and 9×10^{-4} (LRT).

By simulation: p-value = 16/10,000 (χ^2) and 7/10,000 (LRT)

Null simulation results

A final note

With these sorts of goodness-of-fit tests, we are often happy when our model does fit.

In other words, we often prefer to fail to reject H_0 .

Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H_0 ?

Contingency Tables

2 x 2 tables

Apply a treatment A or B to 20 subjects each, and observe the reponse.

N Y
A 18 2 20
B 11 9 20
29 11 40

Sample 100 subjects and determine whether they are infected with viruses A and B.

Question:

Are the response rates for the two treatments the same?

Question:

Is infection with virus A independent of infection with virus B?

Underlying probabilities

→ Observed data

 \longrightarrow Underlying probabilities

Model:

$$(n_{00},n_{01},n_{10},n_{11}) \sim Multinomial(n,\{p_{00},p_{01},p_{10},p_{11}\})$$

or

$$n_{01} \sim Binomial(n_{0+},p_{01}/p_{0+}) \ \ and \ \ n_{11} \sim Binomial(n_{1+},p_{11}/p_{1+})$$

Conditional probabilities

Underlying probabilities

Conditional probabilities

$$Pr(B = 1 \mid A = 0) = p_{01}/p_{0+}$$

 $Pr(B = 1 \mid A = 1) = p_{11}/p_{1+}$

$$Pr(A = 1 \mid B = 0) = p_{10}/p_{+0}$$

$$Pr(A = 1 \mid B = 1) = p_{11}/p_{+1}$$

The questions in the two examples are the same!

They both concern: $p_{01}/p_{0+} = p_{11}/p_{1+}$

$$p_{01}/p_{0+} = p_{11}/p_{1+}$$

$$\label{eq:problem} Equivalently: \qquad p_{ij} = p_{i+} \times p_{+j} \ \ \text{for all } i,j \quad \longrightarrow \ \text{think Pr(A and B)} = \text{Pr(A)} \times \text{Pr(B)}.$$

This is a composite hypothesis!

2 x 2 table

A different view

$$p_{00} p_{01} p_{10} p_{11}$$

$$H_0 \colon \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j \qquad \qquad H_0 \colon \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j$$

$$H_0$$
: $p_{ij} = p_{i+} \times p_{+j}$ for all i,j

Degrees of freedom = 4 - 2 - 1 = 1

Expected counts

Observed data

Expected counts

To get the expected counts under the null hypothesis we:

- $\longrightarrow \quad \text{Estimate } p_{1+} \text{ and } p_{+1} \text{ by } n_{1+}/n \text{ and } n_{+1}/n, \text{ respectively.}$ These are the MLEs under $H_0!$
- \longrightarrow Turn these into estimates of the p_{ii}.
- → Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_0) for the "11" cell is the following:

$$\begin{split} e_{11} &= n \times \hat{p}_{11} \\ &= n \times \hat{p}_{1+} \times \hat{p}_{+1} \\ &= n \times (n_{1+}/n) \times (n_{+1}/n) \\ &= (n_{1+} \times n_{+1})/n \end{split}$$

The other cells are similar.

 \longrightarrow We can then calculate a χ^2 or LRT statistic as before!

Observed data

Expected counts

$$X^2 = \frac{(18-14.5)^2}{14.5} + \frac{(11-14.5)^2}{14.5} + \frac{(2-5.5)^2}{5.5} + \frac{(9-5.5)^2}{5.5} = 6.14$$

LRT =
$$2 \times [18 \log(\frac{18}{14.5}) + ... + 9 \log(\frac{9}{5.5})] = 6.52$$

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 1.3% and 1.1%, respectively.

Example 2

Observed data

Expected counts

$$X^2 = \frac{(9-5.2)^2}{5.2} + \frac{(20-23.8)^2}{23.8} + \frac{(9-12.8)^2}{12.8} + \frac{(62-58.2)^2}{58.2} = 4.70$$

LRT =
$$2 \times [9 \log(\frac{9}{5.2}) + \ldots + 62 \log(\frac{62}{58.2})] = 4.37$$

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 3.0% and 3.7%, respectively.

Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?
- What's the chance of getting a table at least as "extreme"?

Hypergeometric distribution

- Imagine an urn with K white balls and N − K black balls.
- Draw n balls without replacement.
- Let x be the number of white balls in the sample.
- x follows a hypergeometric distribution (w/ parameters K, N, n).

Hypergeometric probabilities

Suppose $X \sim Hypergeometric (N, K, n)$.

No. of white balls in a sample of size n, drawn without replacement from an urn with K white and N - K black.

$$Pr(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

Example:

In urn
$$N = 40, \ K = 29, \ n = 20$$

$$\begin{array}{ccc} 0 & 1 \\ \hline 18 & 20 \\ \hline \text{not} & 20 \\ \hline 29 & 11 & 40 \end{array} \qquad \text{Pr}(X = 18) = \frac{\binom{29}{18}\binom{40-29}{20-18}}{\binom{40}{20}} \approx 1.4\%$$

Back to Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- Pr(observed table \mid H₀) = Pr(X=18) X ~ Hypergeometric (N=40, K=29, n=20)

Fisher's exact test

- 1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
- 2. Use that probability as a statistic.
- 3. P-value (for Fisher's exact test of independence):
 - The sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

The observed data

All possible tables (with these marginals):

Fisher's exact test: example 1

Observed data

P-value $\approx 3.1\%$

Recall:

- $\longrightarrow \chi^2$ test: P-value = 1.3%
- \rightarrow LRT: P-value = 1.1%

Fisher's exact test: example 2

Observed data

 $\text{P-value} \approx 4.4\%$

Recall:

- $\longrightarrow \chi^2$ test: P-value = 3.0%
- \longrightarrow LRT: P-value = 3.7%

Summary

Testing for independence in a 2 x 2 table:

- A special case of testing a composite hypothesis in a onedimensional table.
- You can use either the LRT or χ^2 test, as before.
- You can also use Fisher's exact test.
- If Fisher's exact test is computationally feasible, do it!

Paired data

Sample 100 subjects and determine whether they are infected with viruses A and B.

Underlying probabilities

→ Is the rate of infection of virus A the same as that of virus B?

In other words: Is $p_{1+} = p_{+1}$? Equivalently, is $p_{10} = p_{01}$?

McNemar's test

$$H_0$$
: $p_{01} = p_{10}$

Under H_0 , e.g. if $p_{01}=p_{10}$, the expected counts for cells 01 and 10 are both equal to $(n_{01}+n_{10})/2$.

The
$$\chi^2$$
 test statistic reduces to $X^2 = \frac{(n_{01} - n_{10})^2}{n_{01} + n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^2(df = 1)$.

For the example:
$$X^2 = (20 - 9)^2 / 29 = 4.17 \longrightarrow P = 4.1\%$$
.

An exact test

Condition on $n_{01} + n_{10}$.

Under H_0 , $n_{01} \mid n_{01} + n_{10} \sim Binomial(n_{01} + n_{10}, 1/2)$.

 \longrightarrow For the example, P = 6.1%.

Paired data

Unpaired data Paired data I-B NI-B NI I-A 9 9 18 18 82 100 Α NI-A 62 82 В 29 71 100 20 29 71 100 47 153 200 \rightarrow P = 6.1% \rightarrow P = 9.5%

→ Taking appropriate account of the "pairing" is important!

r x k tables

	Blood type				
Population					
Florida	122	117	19	244	502
Iowa	1781	1351	289	3301	6721
Missouri	353	269	60	713	1395
	2256	1737	367	4258	8618

→ Same distribution of blood types in each population?

Underlying probabilities

Observed data

Underlying probabilities

$$H_0 \colon \quad p_{ij} = p_{i+} \times p_{+j} \quad \text{ for all i,j.}$$

Expected counts

Observed data

Expected counts

Expected counts under H_0 : $e_{ij} = n_{i+} \times n_{+j}/n$ for all i,j.

χ^2 and LRT statistics

Observed data

A B AB O F 122 117 19 244 502 I 1781 1351 289 3301 6721 M 353 269 60 713 1395 2256 1737 367 4258 8618

Expected counts

$$X^2$$
 statistic = $\sum \frac{(obs-exp)^2}{exp} = \cdots = 5.64$

LRT statistic =
$$2 \times \sum obs \ln(obs/exp) = \cdots = 5.55$$

Asymptotic approximation

If the sample size is large, the null distribution of the χ^2 and likelihood ratio test statistics will approximately follow a

$$\chi^2$$
 distribution with $(r-1) \times (k-1)$ d.f.

In the example, $df = (3 - 1) \times (4 - 1) = 6$

$$X^2 = 5.64 \longrightarrow P = 0.46.$$

LRT =
$$5.55 \longrightarrow P = 0.48$$
.

Fisher's exact test

Observed data

- Assume H₀ is true.
 - Condition on the marginal counts
 - Then Pr(table) $\propto 1/\prod_{ij} n_{ij}!$
- Consider all possible tables with the observed marginal counts
- Calculate Pr(table) for each possible table.
- P-value = the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

Fisher's exact test: the example

Since the number of possible tables can be very large, we often must resort to computer simulation.

Another example

Survival in different treatment groups:

	Survive		
Treatment	No	Yes	
Α	15	5	
В	17	3	
С	10	10	
D	17	3	
Е	16	4	

→ Is the survival rate the same for all treatments?

Results

Observed	b
----------	---

	Survive		
Treatment	No	Yes	
A	15	5	
В	17	3	
С	10	10	
D	17	3	
Е	16	4	

Expected under H₀

	Survive		
Treatment	No	Yes	
A	15	5	
В	15	5	
С	15	5	
D	15	5	
E	15	5	

$$X^2 = 9.07 \qquad \longrightarrow \qquad P = 5.9\% \qquad \text{(how many df?)}$$

LRT = $8.41 \longrightarrow P = 7.8\%$

Fisher's exact test: P = 8.7%

All pairwise comparisons

Two-locus linkage in an intercross

Are these two loci linked?

General test of independence

Observed data

Expected counts

$$\chi^2$$
 test: $X^2 = 10.4 \longrightarrow P = 3.5\%$ (df = 4)

LRT test: LRT =
$$9.98 \longrightarrow P = 4.1\%$$

Fisher's exact test: P = 4.6%

A more specific test

Observed data

Underlying probabilities

$$H_0$$
: $\theta = 1/2$ versus H_a : $\theta < 1/2$

Use a likelihood ratio test!

- \longrightarrow Obtain the general MLE of θ .
- $\longrightarrow \ \, \text{Calculate the LRT statistic} = 2 \, \ln \left\{ \frac{\Pr(\text{data} \mid \hat{\theta})}{\Pr(\text{data} \mid \theta = 1/2)} \right\}$
- \longrightarrow Compare this statistic to a $\chi^2(df = 1)$.

Results

MLE: $\hat{\theta} = 0.359$

LRT statistic: LRT = $7.74 \rightarrow P = 0.54\%$ (df = 1)

- \longrightarrow Here we assume Mendelian segregation, and that deviation from H_0 is "in a particular direction."
- If these assumptions are correct, we'll have greater power to detect linkage using this more specific approach.