Goodness of Fit

Goodness of fit - 2 classes

A	B
78	22

\longrightarrow Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing $\mathrm{p}_{\mathrm{A}}=0.75$!

- Exact p-value
- Exact confidence interval
- Normal approximation

Goodness of fit - 3 classes

$A A$	$A B$	$B B$
35	43	22

\longrightarrow Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

- Imagine an urn with k types of balls.
- Let p_{i} denote the proportion of type i .
- Draw n balls with replacement.
- Outcome: $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, with $\sum_{i} n_{i}=n$, where n_{i} is the no. balls drawn that were of type i.
$\longrightarrow \mathrm{P}\left(X_{1}=n_{1}, \ldots, X_{\mathrm{k}}=\mathrm{n}_{\mathrm{k}}\right)=\frac{\mathrm{n}!}{n_{1}!\times \cdots \times n_{k}!} p_{1}^{n_{1}} \times \cdots \times p_{k}^{n_{k}}$
if $\quad 0 \leq n_{i} \leq n, \quad \sum_{i} n_{i}=n$

Otherwise $\mathrm{P}\left(X_{1}=\mathrm{n}_{1}, \ldots, X_{\mathrm{k}}=\mathrm{n}_{\mathrm{k}}\right)=0$.

Example

Let $\left(p_{1}, p_{2}, p_{3}\right)=(0.25,0.50,0.25)$ and $n=100$.

$$
\begin{aligned}
\mathrm{P}\left(X_{1}=35, X_{2}=43, X_{3}=22\right) & =\frac{100!}{35!43!22!} 0.25^{35} 0.50^{43} 0.25^{22} \\
& \approx 7.3 \times 10^{-4}
\end{aligned}
$$

Rather brutal, numerically speaking.
\longrightarrow Take logs (and use a computer).

Goodness of fit test

We observe $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}\right) \sim \operatorname{Multinomial}\left(\mathrm{n}, \mathrm{p}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right\}\right)$.

We seek to test $H_{0}: p_{1}=0.25, p_{2}=0.5, p_{3}=0.25$. versus $H_{a}: H_{0}$ is false.

We need two things:
\longrightarrow A test statistic.
\longrightarrow The null distribution of the test statistic.

The likelinood-ratio test (LRT)

Back to the first example:

A	B
n_{A}	n_{B}

Test $\quad \mathrm{H}_{0}:\left(\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}\right)=\left(\pi_{\mathrm{A}}, \pi_{\mathrm{B}}\right) \quad$ versus $\quad \mathrm{H}_{\mathrm{a}}:\left(\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}\right) \neq\left(\pi_{\mathrm{A}}, \pi_{\mathrm{B}}\right)$.
\longrightarrow MLE under H_{a} : $\quad \hat{\mathrm{p}}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} / \mathrm{n} \quad$ where $\mathrm{n}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}$.
Likelihood under $H_{a}: \quad L_{a}=\operatorname{Pr}\left(n_{A} \mid p_{A}=\hat{p}_{A}\right)=\binom{n}{n_{A}} \times \hat{p}_{A}^{n_{A}} \times\left(1-\hat{p}_{A}\right)^{n-n_{A}}$
Likelihood under $H_{0}: \quad L_{0}=\operatorname{Pr}\left(n_{A} \mid P_{A}=\pi_{A}\right)=\binom{n}{n_{A}} \times \pi_{A}^{n_{A}} \times\left(1-\pi_{A}\right)^{n-n_{A}}$
\longrightarrow Likelihood ratio test statistic: LRT $=2 \times \ln \left(\mathrm{L}_{\mathrm{a}} / \mathrm{L}_{0}\right)$
\longrightarrow Some clever people have shown that if H_{0} is true, then LRT follows a $\chi^{2}(\mathrm{df}=1)$ distribution (approximately).

Likelihood-ratio test for the example

We observed $\mathrm{n}_{\mathrm{A}}=78$ and $\mathrm{n}_{\mathrm{B}}=22$.
$H_{0}:\left(p_{A}, p_{B}\right)=(0.75,0.25)$
$H_{a}:\left(p_{A}, p_{B}\right) \neq(0.75,0.25)$
$\mathrm{L}_{\mathrm{a}}=\operatorname{Pr}\left(\mathrm{n}_{\mathrm{A}}=78 \mid \mathrm{p}_{\mathrm{A}}=0.78\right)=\binom{100}{78} \times 0.78^{78} \times 0.22^{22}=0.096$.
$\mathrm{L}_{0}=\operatorname{Pr}\left(\mathrm{n}_{\mathrm{A}}=78 \mid \mathrm{p}_{\mathrm{A}}=0.75\right)=\binom{100}{78} \times 0.75^{78} \times 0.25^{22}=0.075$.
$\longrightarrow \quad$ LRT $=2 \times \ln \left(L_{a} / L_{0}\right)=0.49$.

Using a $\chi^{2}(\mathrm{df}=1)$ distribution, we get a p-value of 0.48 .
We therefore have no evidence against the null hypothesis.

Null distribution

A little math ...

$\mathrm{n}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}, \quad \mathrm{n}_{\mathrm{A}}^{0}=\mathrm{E}\left[\mathrm{n}_{\mathrm{A}} \mid \mathrm{H}_{0}\right]=\mathrm{n} \times \pi_{\mathrm{A}}, \quad \mathrm{n}_{\mathrm{B}}^{0}=\mathrm{E}\left[\mathrm{n}_{\mathrm{B}} \mid \mathrm{H}_{0}\right]=\mathrm{n} \times \pi_{\mathrm{B}}$.

Then $\quad L_{a} / L_{0}=\left(\frac{n_{A}}{n_{A}^{O}}\right)^{n_{A}} \times\left(\frac{n_{B}}{n_{B}^{0}}\right)^{n_{B}}$

Or equivalently \quad LRT $=2 \times n_{A} \times \ln \left(\frac{n_{A}}{n_{A}^{0}}\right)+2 \times n_{B} \times \ln \left(\frac{n_{B}}{n_{B}^{0}}\right)$.
\longrightarrow Why do this?

Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

$$
\text { LRT }=2 \times \sum_{i=1}^{k} n_{i} \times \ln \left(\frac{n_{i}}{n_{i}^{i}}\right)
$$

If H_{0} is true, LRT $\sim \chi^{2}(\mathrm{df}=\mathrm{k}-1)$

The chi-square test

There is an alternative technique. The test is called the chi-square test, and has the greater tradition in the literature. For two groups, calculate the following:

$$
X^{2}=\frac{\left(n_{A}-n_{A}^{0}\right)^{2}}{n_{A}^{0}}+\frac{\left(n_{B}-n_{B}^{0}\right)^{2}}{n_{B}^{0}}
$$

\longrightarrow If H_{0} is true, then X^{2} is a draw from a $\chi^{2}(\mathrm{df}=1)$ distribution (approximately).

Example

In the first example we observed $\mathrm{n}_{\mathrm{A}}=78$ and $\mathrm{n}_{\mathrm{B}}=22$. Under the null hypothesis we have $n_{A}^{0}=75$ and $n_{B}^{0}=25$. We therefore get

$$
X^{2}=\frac{(78-75)^{2}}{75}+\frac{(22-25)^{2}}{25}=0.12+0.36=0.48
$$

This corresponds to a p-value of 0.49 . We therefore have no evidence against the hypothesis $\left(p_{A}, p_{B}\right)=(0.75,0.25)$.
\longrightarrow Note: using the likelihood ratio test we got a p-value of 0.48.

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more than just two groups.

If we have k groups, the chi-square test statistic we use is

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n_{i}^{0}\right)^{2}}{n_{i}^{0}} \sim \chi^{2}(\mathrm{df}=\mathrm{k}-1)
$$

Test statistics

Let $\mathrm{n}_{\mathrm{i}}^{0}$ denote the expected count in group if H_{0} is true.

LRT statistic

$$
\mathrm{LRT}=2 \ln \left\{\frac{\operatorname{Pr}(\text { data } \mid \mathrm{p}=\mathrm{MLE})}{\operatorname{Pr}\left(\text { data } \mid \mathrm{H}_{0}\right)}\right\}=\ldots=2 \sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \ln \left(\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}^{0}\right)
$$

χ^{2} test statistic

$$
X^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}=\sum_{i} \frac{\left(n_{i}-n_{i}^{0}\right)^{2}}{n_{i}^{0}}
$$

Null distribution of test statistic

What values of LRT (or X^{2}) should we expect, if H_{0} were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations
\longrightarrow If the sample size n is large, we have

$$
\text { LRT } \sim \chi^{2}(\mathrm{k}-1) \text { and } \mathrm{X}^{2} \sim \chi^{2}(\mathrm{k}-1)
$$

Recommendation

For either the LRT or the χ^{2} test:
\longrightarrow The null distribution is approximately $\chi^{2}(\mathrm{k}-1)$ if the sample size is large.
\longrightarrow The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is ≥ 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not $p_{A A}=0.25, p_{A B}=0.5, p_{B B}=0.25$
But rather something like:

$$
p_{A A}=f^{2}, p_{A B}=2 f(1-f), p_{B B}=(1-f)^{2} \quad \text { for some } f .
$$

For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus.
\longrightarrow Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

Example data:

$A A$	$A B$	$B B$
5	20	75

Another example

ABO blood groups $\longrightarrow 3$ alleles A, B, O.
Phenotype A genotype AA or AO B genotype BB or BO
AB genotype AB
O genotype O
Allele frequencies: $f_{A}, f_{B}, f_{O} \quad$ (Note that $f_{A}+f_{B}+f_{O}=1$)
Under Hardy-Weinberg equilibrium, we expect

$$
\mathrm{p}_{\mathrm{A}}=\mathrm{f}_{\mathrm{A}}^{2}+2 \mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{O}} \quad \mathrm{p}_{\mathrm{B}}=\mathrm{f}_{\mathrm{B}}^{2}+2 \mathrm{f}_{\mathrm{B}} \mathrm{f}_{\mathrm{O}} \quad \mathrm{p}_{\mathrm{AB}}=2 \mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{B}} \quad \mathrm{p}_{\mathrm{O}}=\mathrm{f}_{\mathrm{O}}^{2}
$$

Example data:

O	A	B	AB
104	91	36	19

LRT for example 1

Data: $\left(\mathrm{n}_{\mathrm{AA}}, \mathrm{n}_{\mathrm{AB}}, \mathrm{n}_{\mathrm{BB}}\right) \sim \operatorname{Multinomial}\left(\mathrm{n},\left\{\mathrm{p}_{\mathrm{AA}}, \mathrm{p}_{\mathrm{AB}}, \mathrm{p}_{\mathrm{BB}}\right\}\right)$
We seek to test whether the data conform reasonably to $H_{0}: p_{A A}=f^{2}, p_{A B}=2 f(1-f), p_{B B}=(1-f)^{2} \quad$ for some f.

General MLEs:
$\hat{p}_{\mathrm{AA}}=\mathrm{n}_{\mathrm{AA}} / \mathrm{n}, \hat{\mathrm{p}}_{\mathrm{AB}}=\mathrm{n}_{\mathrm{AB}} / \mathrm{n}, \hat{\mathrm{p}}_{\mathrm{BB}}=\mathrm{n}_{\mathrm{BB}} / \mathrm{n}$

MLE under H_{0} :
$\hat{f}=\left(n_{A A}+n_{A B} / 2\right) / n \longrightarrow \tilde{p}_{A A}=\hat{f}^{2}, \tilde{p}_{A B}=2 \hat{f}(1-\hat{f}), \tilde{p}_{B B}=(1-\hat{f})^{2}$
LRT statistic: $\quad \mathrm{LRT}=2 \times \ln \left\{\frac{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{AA}}, \mathrm{n}_{\mathrm{AB}}, \mathrm{n}_{\mathrm{BB}} \mid \hat{\mathrm{p}}_{\mathrm{AA}}, \hat{\mathrm{p}}_{\mathrm{AB}}, \hat{\mathrm{p}}_{\mathrm{BB}}\right)}{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{AA}}, \mathrm{n}_{\mathrm{AB}}, \mathrm{n}_{\mathrm{BB}} \mid \tilde{\mathrm{p}}_{\mathrm{AA}}, \tilde{\mathrm{p}}_{\mathrm{AB}}, \tilde{\mathrm{p}}_{\mathrm{BB}}\right)}\right\}$

LRT for example 2

Data: $\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}}\right) \sim \operatorname{Multinomial}\left(\mathrm{n},\left\{\mathrm{p}_{\mathrm{O}}, \mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}, \mathrm{p}_{\mathrm{AB}}\right\}\right)$
We seek to test whether the data conform reasonably to
$H_{0}: p_{A}=f_{A}^{2}+2 f_{A} f_{O}, p_{B}=f_{B}^{2}+2 f_{B} f_{O}, p_{A B}=2 f_{A} f_{B}, p_{O}=f_{O}^{2}$ for some f_{o}, f_{A}, f_{B}, where $f_{0}+f_{A}+f_{B}=1$.

General MLEs: $\quad \hat{\mathrm{p}}_{\mathrm{O}}, \hat{\mathrm{p}}_{\mathrm{A}}, \hat{\mathrm{p}}_{\mathrm{B}}, \hat{\mathrm{p}}_{\mathrm{AB}}$, like before.

MLE under H_{0} : Requires numerical optimization
Call them $\left(\hat{f}_{\mathrm{O}}, \hat{\mathrm{f}}_{\mathrm{A}}, \hat{\mathrm{f}}_{\mathrm{B}}\right) \longrightarrow\left(\tilde{\mathrm{p}}_{\mathrm{O}}, \tilde{\mathrm{p}}_{\mathrm{A}}, \tilde{\mathrm{p}}_{\mathrm{B}}, \tilde{\mathrm{p}}_{\mathrm{AB}}\right)$
LRT statistic: $\quad L R T=2 \times \ln \left\{\frac{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}} \mid \hat{\mathrm{p}}_{\mathrm{O}}, \hat{\mathrm{p}}_{\mathrm{A}}, \hat{\mathrm{p}}_{\mathrm{B}}, \hat{\mathrm{p}}_{\mathrm{AB}}\right)}{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}} \mid \tilde{p}_{\mathrm{O}}, \tilde{\mathrm{p}}_{\mathrm{A}}, \tilde{\mathrm{p}}_{\mathrm{B}}, \tilde{\mathrm{p}}_{\mathrm{AB}}\right)}\right\}$
χ^{2} test for these examples

- Obtain the MLE(s) under H_{0}.
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H_{0}.
- Calculate $\mathrm{X}^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Null distribution for these cases

- Computer simulation (with one wrinkle)
- Simulate data under H_{0} (plug in the MLEs for the observed data)
- Calculate the MLE with the simulated data
- Calculate the test statistic with the simulated data
- Repeat many times
- Asymptotic approximation
- Under H_{0}, if the sample size, n , is large, both the LRT statistic and the χ^{2} statistic follow, approximately, a χ^{2} distribution with $\mathrm{k}-\mathrm{s}-1$ degrees of freedom, where s is the number of parameters estimated under H_{0}.
- Note that $s=1$ for example 1, and $s=2$ for example 2, and so $\mathrm{df}=1$ for both examples.

Example 1

Example data:

$A A$	$A B$	$B B$
5	20	75

MLE: $\quad \hat{f}=(5+20 / 2) / 100=15 \%$

Expected counts:
$2.25 \quad 25.5 \quad 72.25$

Test statistics: LRT statistic $=3.87 \quad X^{2}=4.65$

Asymptotic $\chi^{2}(\mathrm{df}=1)$ approx'n: $\mathrm{P} \approx 4.9 \% \quad \mathrm{P} \approx 3.1 \%$
10,000 computer simulations: $\quad \mathrm{P} \approx 8.2 \% \quad \mathrm{P} \approx 2.4 \%$

Example 1

Est'd null dist'n of chi-square statistic

Example 2

Example data:

O	A	B	AB
104	91	36	19

MLE: $\quad \hat{\mathrm{f}}_{\mathrm{O}} \approx 62.8 \%, \hat{\mathrm{f}}_{\mathrm{A}} \approx 25.0 \%, \hat{\mathrm{f}}_{\mathrm{B}} \approx 12.2 \%$.

Expected counts: | 98.5 | 94.2 | 42.0 | 15.3 |
| :--- | :--- | :--- | :--- |

Test statistics: \quad LRT statistic $=1.99 \quad X^{2}=2.10$

Asymptotic $\chi^{2}(\mathrm{df}=1)$ approx'n: $\quad P \approx 16 \% \quad P \approx 15 \%$
10,000 computer simulations: $\quad P \approx 17 \% \quad P \approx 15 \%$

Example 2

Est'd null dist'n of LRT statistic

Est'd null dist'n of chi-square statistic

Example 3

Data on number of sperm bound to an egg:

count | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 26 | 4 | 4 | 2 | 1 |

\longrightarrow Do these follow a Poisson distribution?

MLE:
$\hat{\lambda}=$ sample average $=(0 \times 26+1 \times 4+\ldots+5 \times 1) / 38 \approx 0.71$
Expected counts $\longrightarrow n_{i}^{0}=n \times \mathrm{e}^{-\hat{\lambda}} \hat{\lambda}^{\mathrm{i}} / \mathrm{i}!$

Example 3

	0	1	2	3	4	5
observed expected	26	4	4	2	1	1
	18.7	13.3	4.7	1.1	0.2	0.0
$\mathrm{X}^{2}=\sum \frac{(\text { obs }-\exp)^{2}}{\exp }=\ldots=42.8$						
LRT $=2 \sum \mathrm{obs} \log (\mathrm{obs} / \mathrm{exp})=\ldots=18.8$						
Compare to χ^{2} ($\mathrm{df}=6-1-1=4$)						
P-value $=1 \times 10^{-8}\left(\chi^{2}\right)$ and $9 \times 10^{-4}(\mathrm{LRT})$.						
By simulation: p	lue $=$	16/10,	001	an	7/10	00

Null simulation results

A final note

With these sorts of goodness-of-fit tests, we are often happy when our model does fit.

In other words, we often prefer to fail to reject H_{0}.
Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H_{0} ?

Contingency Tables

2×2 tables

Apply a treatment A or B to 20 subjects each, and observe the reponse.

Question:
\longrightarrow Are the response rates for the two treatments the same?

Sample 100 subjects and determine whether they are infected with viruses A and B.

	I-B	NI-B	
I-A	9	9	18
NI-A	20	62	82
	29	71	100

Question:
\longrightarrow Is infection with virus A independent of infection with virus B ?

Underlying probabilities

\longrightarrow Observed data

		B		
		1		
A	0	n_{00}	n_{01}	n_{0+}
	1	n_{10}	n_{11}	n_{1+}
		n_{+0}	n_{+1}	n

\longrightarrow Underlying probabilities

Model:
$\left(\mathrm{n}_{00}, \mathrm{n}_{01}, \mathrm{n}_{10}, \mathrm{n}_{11}\right) \sim \operatorname{Multinomial}\left(\mathrm{n},\left\{\mathrm{p}_{00}, \mathrm{p}_{01}, \mathrm{p}_{10}, \mathrm{p}_{11}\right\}\right)$
or
$\mathrm{n}_{01} \sim \operatorname{Binomial}\left(\mathrm{n}_{0+}, \mathrm{p}_{01} / \mathrm{p}_{0_{+}}\right)$and $\mathrm{n}_{11} \sim \operatorname{Binomial}\left(\mathrm{n}_{1_{+}}, \mathrm{p}_{11} / \mathrm{p}_{1+}\right)$

Conditional probabilities

Underlying probabilities

Conditional probabilities

$$
\begin{aligned}
& \operatorname{Pr}(B=1 \mid A=0)=p_{01} / p_{0+} \\
& \operatorname{Pr}(B=1 \mid A=1)=p_{11} / p_{1+} \\
& \operatorname{Pr}(A=1 \mid B=0)=p_{10} / p_{+0} \\
& \operatorname{Pr}(A=1 \mid B=1)=p_{11} / p_{+1}
\end{aligned}
$$

\longrightarrow The questions in the two examples are the same!
They both concern: $\quad \mathrm{p}_{01} / \mathrm{p}_{0+}=\mathrm{p}_{11} / \mathrm{p}_{1+}$
Equivalently: $\quad p_{i j}=p_{i+} \times p_{+j}$ for all $i, j \rightarrow$ think $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)$.

This is a composite hypothesis!

2×2 table

\[

\]

H_{0} :
$p_{i j}=p_{i+} \times p_{+j}$ for all i, j

A different view

$$
p_{00} p_{01} p_{10} p_{11}
$$

$H_{0}: \quad p_{i j}=p_{i+} \times p_{+j}$ for all i, j

Expected counts

Observed data

	B				
			1		
A	0	n_{00}	n_{01}		
	n_{0+}				
	1	n_{10}	n_{11}		
n_{1+}					

Expected counts
B

	0	1	
	0	e_{00}	e_{01}
	n_{0+}		
	1	e_{10}	e_{11}
		n_{1+}	
		n_{+0}	n_{+1}
			n

To get the expected counts under the null hypothesis we:
\longrightarrow Estimate p_{1+} and p_{+1} by n_{1+} / n and n_{+1} / n, respectively. These are the MLEs under H_{0} !
$\longrightarrow \quad$ Turn these into estimates of the p_{ij}.
\longrightarrow Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_{0}) for the " 11 " cell is the following:

$$
\begin{aligned}
\mathrm{e}_{11} & =\mathrm{n} \times \hat{\mathrm{p}}_{11} \\
& =\mathrm{n} \times \hat{\mathrm{p}}_{1+} \times \hat{\mathrm{p}}_{+1} \\
& =\mathrm{n} \times\left(\mathrm{n}_{1+} / \mathrm{n}\right) \times\left(\mathrm{n}_{+1} / \mathrm{n}\right) \\
& =\left(\mathrm{n}_{1+} \times \mathrm{n}_{+1}\right) / \mathrm{n}
\end{aligned}
$$

The other cells are similar.
\longrightarrow We can then calculate a χ^{2} or LRT statistic as before!

Example 1

Observed data

	N	Y	
A	18	2	20
B	11	9	20
	29	11	40

2911
40
$X^{2}=\frac{(18-14.5)^{2}}{14.5}+\frac{(11-14.5)^{2}}{14.5}+\frac{(2-5.5)^{2}}{5.5}+\frac{(9-5.5)^{2}}{5.5}=6.14$
LRT $=2 \times\left[18 \log \left(\frac{18}{14.5}\right)+\ldots+9 \log \left(\frac{9}{5.5}\right)\right]=6.52$
P-values (based on the asymptotic $\chi^{2}(\mathrm{df}=1)$ approximation):
1.3% and 1.1%, respectively.

Example 2

Observed data

	I-B	NI-B	
I-A	9	9	18
NI-A	20	62	82
	29	71	100

$X^{2}=\frac{(9-5.2)^{2}}{5.2}+\frac{(20-23.8)^{2}}{23.8}+\frac{(9-12.8)^{2}}{12.8}+\frac{(62-58.2)^{2}}{58.2}=4.70$
LRT $=2 \times\left[9 \log \left(\frac{9}{5.2}\right)+\ldots+62 \log \left(\frac{62}{58.2}\right)\right]=4.37$
P-values (based on the asymptotic $\chi^{2}(\mathrm{df}=1)$ approximation):
3.0% and 3.7%, respectively.

Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?
- What's the chance of getting a table at least as "extreme"?

Hypergeometric distribution

- Imagine an urn with K white balls and $\mathrm{N}-\mathrm{K}$ black balls.
- Draw n balls without replacement.
- Let x be the number of white balls in the sample.
- x follows a hypergeometric distribution (w/ parameters K, N, n).

Hypergeometric probabilities

Suppose X ~ Hypergeometric (N, K, n).
No. of white balls in a sample of size n , drawn without replacement from an urn with K white and $\mathrm{N}-\mathrm{K}$ black.

$$
\operatorname{Pr}(X=x)=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}
$$

Example:

	In urn		$\mathrm{N}=40, \mathrm{~K}=29, \mathrm{n}=20$
	01		
sampled not	18	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\operatorname{Pr}(X=18)=\frac{\binom{29}{18}\binom{40-29}{20-18}}{\binom{40}{20}} \approx 1.4 \%$
	2911	40	

Back to Fisher's exact test

Observed data

	N	Y	
A	18	2	20
B	11	9	20
	29	11	40

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- $\operatorname{Pr}\left(\right.$ observed table $\left.\mid \mathrm{H}_{0}\right)=\operatorname{Pr}(\mathrm{X}=18)$
$X \sim$ Hypergeometric ($\mathrm{N}=40, \mathrm{~K}=29, \mathrm{n}=20$)

Fisher's exact test

1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
2. Use that probability as a statistic.
3. P-value (for Fisher's exact test of independence):
\longrightarrow The sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

The observed data

All possible tables (with these marginals):

$$
\begin{aligned}
& \begin{array}{|cc|}
\hline 20 & 0 \\
9 & 11
\end{array} \rightarrow 0.00007 \\
& \begin{array}{|cc|}
\hline 19 & 1 \\
10 & 10
\end{array} \rightarrow 0.00160 \\
& \begin{array}{|ll}
\hline 18 & 2 \\
11 & 9
\end{array} \rightarrow 0.01380 \\
& \begin{array}{|ll|}
\hline 17 & 3 \\
12 & 8
\end{array} \rightarrow 0.06212 \\
& \begin{array}{|ll|}
\hline 16 & 4 \\
13 & 7
\end{array} \rightarrow 0.16246 \\
& \begin{array}{|ll|}
\hline 15 & 5 \\
14 & 6
\end{array} \rightarrow 0.25994 \\
& \begin{array}{|cc|}
\hline 9 & 11 \\
20 & 0
\end{array} \rightarrow 0.00007
\end{aligned}
$$

Fisher's exact test: example 1

Observed data

$$
\mathrm{P} \text {-value } \approx 3.1 \%
$$

Recall:

$\longrightarrow \quad \chi^{2}$ test: P-value $=1.3 \%$
\longrightarrow LRT: P-value $=1.1 \%$

Fisher's exact test: example 2

Observed data				
I-A	I-B	NI-B		P -value $\approx 4.4 \%$
	9	9	18	
$\mathrm{NI}-\mathrm{A}$	20	62	82	
	29	71	100	

Recall:
$\longrightarrow \quad \chi^{2}$ test: P-value $=3.0 \%$
\longrightarrow LRT: P-value $=3.7 \%$

Summary

Testing for independence in a 2×2 table:

- A special case of testing a composite hypothesis in a onedimensional table.
- You can use either the LRT or χ^{2} test, as before.
- You can also use Fisher's exact test.
- If Fisher's exact test is computationally feasible, do it!

Paired data

Sample 100 subjects and determine whether they are infected with viruses A and B.

Underlying probabilities

\longrightarrow Is the rate of infection of virus A the same as that of virus B ? In other words: Is $p_{1+}=p_{+1}$? \quad Equivalently, is $p_{10}=p_{01}$?

McNemar's test

$H_{0}: p_{01}=p_{10}$

Under H_{0}, e.g. if $p_{01}=p_{10}$, the expected counts for cells 01 and 10 are both equal to $\left(n_{01}+n_{10}\right) / 2$.

The χ^{2} test statistic reduces to $X^{2}=\frac{\left(n_{01}-n_{10}\right)^{2}}{n_{01}+n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^{2}(\mathrm{df}=1)$.

For the example: $X^{2}=(20-9)^{2} / 29=4.17 \longrightarrow \quad P=4.1 \%$.

An exact test

Condition on $\mathrm{n}_{01}+\mathrm{n}_{10}$.

Under $\mathrm{H}_{0}, \mathrm{n}_{01} \mid \mathrm{n}_{01}+\mathrm{n}_{10} \sim \operatorname{Binomial}\left(\mathrm{n}_{01}+\mathrm{n}_{10}, 1 / 2\right)$.
\longrightarrow For the example, $\mathrm{P}=6.1 \%$.

Paired data

	Paired data			Unpaired data			
	I-B	NI-B			1	NI	
I-A	9	9	18	A	18	82	100
NI-A	20	62	82	B	29	71	100
	29	71	100		47	153	200

\longrightarrow Taking appropriate account of the "pairing" is important!

r x k tables

Blood type

Population	A	B	AB	O	
Florida	122	117	19	244	502
lowa	1781	1351	289	3301	6721
Missouri	353	269	60	713	1395
	2256	1737	367	4258	8618

\longrightarrow Same distribution of blood types in each population?

Underlying probabilities

Observed data

$H_{0}: \quad p_{i j}=p_{i+} \times p_{+j} \quad$ for all i, j.

Expected counts

Observed data

	A	B	AB	O	
F	122	117	19	244	502
I	1781	1351	289	3301	6721
M	353	269	60	713	1395
	2256	1737	367	4258	8618

Expected counts

	A	B	AB	O	
F	131	101	21	248	502
I	1759	1355	286	3321	6721
M	365	281	59	689	1395
	2256	1737	367	4258	8618

Expected counts under H_{0} : $\quad \mathrm{e}_{\mathrm{ij}}=\mathrm{n}_{\mathrm{i}+} \times \mathrm{n}_{+\mathrm{j}} / \mathrm{n} \quad$ for all i, j.

χ^{2} and LRT statistics

Observed data

A	B	AB	O		
F	122	117	19	244	502
I	1781	1351	289	3301	6721
M	353	269	60	713	1395
	2256	1737	367	4258	8618

Expected counts

	A	B	AB	0	
F	131	101	21	248	502
1	1759	1355	286	3321	6721
M	365	281	59	689	1395
	2256	1737	367	4258	8618

X^{2} statistic $=\sum \frac{(\text { obs }-\exp)^{2}}{\exp }=\cdots=5.64$
LRT statistic $=2 \times \sum$ obs $\ln ($ obs $/ \exp)=\cdots=5.55$

Asymptotic approximation

If the sample size is large, the null distribution of the χ^{2} and likelihood ratio test statistics will approximately follow a

$$
\chi^{2} \text { distribution with }(r-1) \times(k-1) \text { d.f. }
$$

In the example, $\mathrm{df}=(3-1) \times(4-1)=6$
$X^{2}=5.64 \longrightarrow \quad P=0.46$.

LRT $=5.55 \longrightarrow \quad \mathrm{P}=0.48$.

Fisher's exact test

Observed data

> - Assume H_{0} is true.
> - Condition on the marginal counts
> - Then $\operatorname{Pr}($ table $) \propto 1 / \prod_{i j} n_{i j}!$

- Consider all possible tables with the observed marginal counts
- Calculate $\operatorname{Pr}($ table $)$ for each possible table.
- P -value $=$ the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

Fisher's exact test: the example

\longrightarrow Since the number of possible tables can be very large, we often must resort to computer simulation.

Another example

Survival in different treatment groups:

	Survive	
Treatment	No	Yes
A	15	5
B	17	3
C	10	10
D	17	3
E	16	4

\longrightarrow Is the survival rate the same for all treatments?

Results

Observed			Expected under H_{0}		
Treatment	Survive		Treatment	Survive	
	No			No	Yes
A	15	5	A	15	5
B	17	3	B	15	5
C	10	10	C	15	5
D	17	3	D	15	5
E	16	4	E	15	5
$\mathrm{X}^{2}=9.07$	\longrightarrow	$\mathrm{P}=5.9 \%$	(how many dif)		
LRT $=8.41$	-	$\longrightarrow P=7.8 \%$			

Fisher's exact test: $\mathrm{P}=8.7 \%$

All pairwise comparisons

Two-locus linkage in an intercross

BB Bb bb			
AA	6	15	3
Aa	9	29	6
aa	3	16	13

Are these two loci linked?

General test of independence

Observed data

					BB		Bb	bb
AAA	6	15	3					
Aa	9	29	6					
aa	3	16	13					

Expected counts

χ^{2} test: $\quad X^{2}=10.4 \quad \longrightarrow \quad P=3.5 \% \quad(d f=4)$
LRT test: \quad LRT $=9.98 \quad \longrightarrow \quad P=4.1 \%$
Fisher's exact test: $\quad P=4.6 \%$

A more specific test

Observed data
BB Bb bb

AA	6	15	3
Aa	9	29	6
aa	3	16	13

Underlying probabilities

BB	Bb	bb	
AA	$\frac{1}{4}(1-\theta)^{2}$	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{4} \theta^{2}$
Aa	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{2}\left[\theta^{2}+(1-\theta)^{2}\right]$	$\frac{1}{2} \theta(1-\theta)$
aa	$\frac{1}{4} \theta^{2}$	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{4}(1-\theta)^{2}$

$$
H_{0}: \theta=1 / 2 \quad \text { versus } \quad H_{a}: \theta<1 / 2
$$

Use a likelihood ratio test!
\longrightarrow Obtain the general MLE of θ.
\longrightarrow Calculate the LRT statistic $=2 \ln \left\{\frac{\operatorname{Pr}(\text { data } \mid \hat{\theta})}{\operatorname{Pr}(\text { data } \mid \theta=1 / 2)}\right\}$
\longrightarrow Compare this statistic to a $\chi^{2}(\mathrm{df}=1)$.

Results

BB Bb bb			
AA Aa aa	6	15	3
	9	29	6
	3		

MLE: $\hat{\theta}=0.359$
LRT statistic: \quad LRT $=7.74 \longrightarrow P=0.54 \% \quad(d f=1)$
\longrightarrow Here we assume Mendelian segregation, and that deviation from H_{0} is "in a particular direction."
\longrightarrow If these assumptions are correct, we'll have greater power to detect linkage using this more specific approach.

