Analysis of Variance

Blood coagulation time

avg
A $62606359 \quad 61$
B $636771646566 \quad 66$
C $686671676868 \quad 68$
D $\quad 5662606163646359$
61

Blood coagulation time

Notation

Assume we have k treatment groups.
$\mathrm{n}_{\mathrm{t}} \quad$ number of subjects in treatment group t
N number of subjects (overall)
$\mathrm{Y}_{\mathrm{ti}} \quad$ response i in treatment group t
\bar{Y}_{t}. average response in treatment group t
$\bar{Y} \quad$ average response (overall)

Variance contributions

$$
\begin{aligned}
\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}\right)^{2} & =\sum_{t} n_{t}\left(\bar{Y}_{t \cdot}-\bar{Y}\right)^{2}+\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2} \\
S_{T} & =S_{B}+S_{W} \\
N-1 & =N-1+N-k
\end{aligned}
$$

Estimating the variability

We assume that the data are random samples from four normal distributions having the same variance σ^{2}, differing only (if at all) in their means.
We can estimate the variance σ^{2} for each treatment t , using the sum of squared differences from the averages within each group.

Define, for treatment group t,

$$
S_{t}=\sum_{i=1}^{n_{t}}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2}
$$

Then

$$
\mathrm{E}\left(\mathrm{~S}_{\mathrm{t}}\right)=\left(\mathrm{n}_{\mathrm{t}}-1\right) \times \sigma^{2} .
$$

Within group variability

The within-group sum of squares is the sum of all treatment sum of squares:

$$
S_{w}=S_{1}+\cdots+S_{k}=\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{\mathrm{t} .}\right)^{2}
$$

The within-group mean square is defined as

$$
M_{W}=\frac{S_{1}+\cdots+S_{k}}{\left(n_{1}-1\right)+\cdots+\left(n_{k}-1\right)}=\frac{S_{W}}{N-k}=\frac{\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2}}{N-k}
$$

It is our first estimate of σ^{2}.

Between group variability

The between-group sum of squares is

$$
S_{B}=\sum_{t=1}^{k} n_{t}\left(\bar{Y}_{t}-\bar{Y}\right)^{2}
$$

The between-group mean square is defined as

$$
M_{B}=\frac{S_{B}}{k-1}=\frac{\sum_{t} n_{t}\left(\bar{Y}_{t}-\bar{Y}\right)^{2}}{k-1}
$$

It is our second estimate of σ^{2}.

Important facts

The following are facts that we will exploit later for some formal hypothesis testing:

- The distribution of $\mathrm{S}_{\mathrm{w}} / \sigma^{2}$ is $\chi^{2}(\mathrm{df}=\mathrm{N}-\mathrm{k})$
- The distribution of $\mathrm{S}_{\mathrm{B}} / \sigma^{2}$ is $\chi^{2}(\mathrm{df}=\mathrm{k}-1) \quad$ if there is no treatment effect!
- S_{W} and S_{B} are independent

The F distribution

Let $Z_{1} \sim \chi_{m}^{2}$, and $Z_{2} \sim \chi_{n}^{2}$. Assume Z_{1} and Z_{2} are independent.
$\longrightarrow \quad$ Then $\frac{Z_{1} / m}{Z_{2} / n} \sim F_{m, n}$

ANOVA table

source
sum of squares
df
mean square
between treatments

$$
S_{B}=\sum_{t} n_{t}\left(\bar{Y}_{t-}-\bar{Y}\right)^{2} \quad k-1
$$

$M_{B}=S_{B} /(k-1)$
within treatments
$\mathrm{S}_{\mathrm{W}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}_{\mathrm{t}}\right)^{2} \quad \mathrm{~N}-\mathrm{k} \quad \mathrm{M}_{\mathrm{W}}=\mathrm{S}_{\mathrm{W}} /(\mathrm{N}-\mathrm{k})$
total
$\mathrm{S}_{\mathrm{T}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}\right)^{2} \quad \mathrm{~N}-1$

Example

source	sum of squares	df	mean square
between treatments	228	3	76.0
within treatments	112	20	5.6
total	340	23	

The ANOVA model

We write $\quad \mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \quad$ with $\quad \epsilon_{\mathrm{ti}} \sim \operatorname{iid} \mathrm{N}\left(0, \sigma^{2}\right)$.

Using $\quad \tau_{\mathrm{t}}=\mu_{\mathrm{t}}-\mu \quad$ we can also write

$$
\mathbf{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}} .
$$

The corresponding analysis of the data is

$$
y_{\mathrm{ti}}=\bar{y}_{. .}+\left(\bar{y}_{\mathrm{t}}-\overline{\mathrm{y}}_{. .}\right)+\left(\mathrm{y}_{\mathrm{ti}}-\overline{\mathrm{y}}_{\mathrm{t}}\right)
$$

The ANOVA model

Three different ways to describe the model:
A. Y_{ti} independent with $\mathrm{Y}_{\mathrm{ti}} \sim \mathrm{N}\left(\mu_{\mathrm{t}}, \sigma^{2}\right)$
B. $\quad \mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}}$ where $\epsilon_{\mathrm{ti}} \sim$ iid $\mathrm{N}\left(0, \sigma^{2}\right)$
C. $\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}}$ where $\epsilon_{\mathrm{ti}} \sim$ iid $\mathrm{N}\left(0, \sigma^{2}\right)$ and $\sum_{\mathrm{t}} \tau_{\mathrm{t}}=0$

Now what did we do...?

$$
\left(\begin{array}{llll}
62 & 63 & 68 & 56 \\
60 & 67 & 66 & 62 \\
63 & 71 & 71 & 60 \\
59 & 64 & 67 & 61 \\
65 & 68 & 63 \\
66 & 68 & 64 \\
& & & 63 \\
& & & 59
\end{array}\right)=\left(\begin{array}{lllll}
64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
& 64 & 64 & 64 \\
& 64 & 64 & 64 \\
& & & 64 \\
& & & 64
\end{array}\right)+\left(\begin{array}{rrrr}
-3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
& 2 & 4 & -3 \\
& 2 & 4 & -3 \\
& & & -3 \\
& & & -3
\end{array}\right)+\left(\begin{array}{rrrr}
1 & -3 & 0 & -5 \\
-1 & 1 & -2 & 1 \\
2 & 5 & 3 & -1 \\
-2 & -2 & -1 & 0 \\
& -1 & 0 & 2 \\
& 0 & 0 & 3 \\
& & & \\
& & & \\
& & & \\
& & & 2
\end{array}\right)
$$

Vector
Sum of Squares

observations		grand average		treatment deviations		residuals
$\begin{gathered} y_{\mathrm{ti}} \\ \mathrm{y} \end{gathered}$	=	$\overline{\mathrm{y}} .$	+	$\bar{y}_{\mathrm{t}_{\mathrm{t}}}-\overline{\mathrm{y}} .$	+	$y_{t i}-\bar{y}_{\mathrm{t}}$
98,644	=	98,304	+	228	+	112
24	=	1	+	3	+	20

Hypothesis testing

We assume

$$
\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \quad \text { with } \quad \epsilon_{\mathrm{ti}} \sim \operatorname{iid} \mathrm{~N}\left(0, \sigma^{2}\right)
$$

Equivalently, $\mathrm{Y}_{\mathrm{ti}} \sim$ independent $\mathrm{N}\left(\mu_{\mathrm{t}}, \sigma^{2}\right)$

We want to test

$$
\mathrm{H}_{0}: \tau_{1}=\cdots=\tau_{k}=0 \quad \text { versus } \quad \mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0} \text { is false. }
$$

Equivalently, $\mathrm{H}_{0}: \mu_{1}=\ldots=\mu_{\mathrm{k}}$

For this, we use a one-sided F test.

Another fact

It can be shown that

$$
\mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2}+\frac{\sum_{\mathrm{t}} \mathrm{n}_{\mathrm{t}} \tau_{\mathrm{t}}^{2}}{\mathrm{k}-1}
$$

Therefore

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2} \quad \text { if } \mathrm{H}_{0} \text { is true } \\
& \mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)>\sigma^{2} \text { if } \mathrm{H}_{0} \text { is false }
\end{aligned}
$$

Recipe for the hypothesis test

Under H_{0} we have

$$
\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{W}}} \sim \mathrm{~F}_{\mathrm{k}-1, \mathrm{~N}-\mathrm{k}} .
$$

Therefore

- Calculate M_{B} and M_{W}.
- Calculate $\mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{W}}$.
- Calculate a p-value using $\mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{W}}$ as test statistic, using the right tail of an F distribution with $\mathrm{k}-1$ and $\mathrm{N}-\mathrm{k}$ degrees of freedom.

Example (cont)

$\mathrm{H}_{0}: \tau_{1}=\tau_{2}=\tau_{3}=\tau_{4}=0$ versus $\mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0}$ is false.
$M_{B}=76, M_{W}=5.6$, therefore $M_{B} / M_{W}=13.57$.
Using an F distribution with 3 and 20 degrees of freedom, we get a pretty darn low p-value. Therefore, we reject the null hypothesis.

Another example

Are the population means the same?

By now, we know two ways of testing that:
Two-sample t-test, and ANOVA with two treatments.
\longrightarrow But do they give similar results?

ANOVA table

source
sum of squares
df
mean square
between treatments
within treatments

$$
S_{B}=\sum_{t} n_{t}\left(\bar{Y}_{t} \cdot-\bar{Y}\right)^{2}
$$

k-1
$M_{B}=S_{B} /(k-1)$
$S_{W}=\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2}$
$N-k \quad M_{W}=S_{W} /(N-k)$
total
$\mathrm{S}_{\mathrm{T}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}\right)^{2}$
($\mathrm{N}-1$)

ANOVA for two groups

The ANOVA test statistic is $\quad M_{B} / M_{W}$, with

$$
M_{B}=n_{1}\left(\bar{Y}_{1}-\bar{Y}\right)^{2}+n_{2}\left(\bar{Y}_{2}-\bar{Y}\right)^{2}
$$

and

$$
M_{W}=\frac{\sum_{i=1}^{n_{1}}\left(Y_{1 i}-\bar{Y}_{1}\right)^{2}+\sum_{i=1}^{n_{2}}\left(Y_{2 i}-\bar{Y}_{2}\right)^{2}}{n_{1}+n_{2}-2}
$$

Two-sample t-test

The test statistic for the two sample t-test is

$$
\mathrm{t}=\frac{\bar{Y}_{1}-\bar{Y}_{2}}{\mathrm{~s} \sqrt{1 / n_{1}+1 / n_{2}}}
$$

with

$$
s^{2}=\frac{\sum_{i=1}^{n_{1}}\left(Y_{1 i}-\bar{Y}_{1}\right)^{2}+\sum_{i=1}^{n_{2}}\left(Y_{2 i}-\bar{Y}_{2}\right)^{2}}{n_{1}+n_{2}-2}
$$

This also assumes equal variance within the groups!

Reference distributions

\longrightarrow Result: $\frac{M_{B}}{M_{W}}=t^{2}$

If there was no difference in means, then

$$
\begin{aligned}
\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{W}}} & \sim \mathrm{~F}_{1, \mathrm{n}_{1}+\mathrm{n}_{2}-2} \\
\mathrm{t} & \sim \mathrm{t}_{\mathrm{n}_{1}+\mathrm{n}_{2}-2}
\end{aligned}
$$

Now does this mean $\quad F_{1, n_{1}+n_{2}-2}=\left(t_{n_{1}+n_{2}-2}\right)^{2}$?

A few facts

$$
\begin{gathered}
\mathrm{F}_{1, \mathrm{k}}=\mathrm{t}_{\mathrm{k}}^{2} \\
\mathrm{~F}_{\mathrm{k}, \infty}=\frac{\chi_{\mathrm{k}}^{2}}{\mathrm{k}} \\
\mathrm{~N}(0,1)^{2}=\chi_{1}^{2}=\mathrm{F}_{1, \infty}=\mathrm{t}_{\infty}^{2}
\end{gathered}
$$

Fixed effects

Random effects

The random effects model

Two different ways to describe the model:
A. $\quad \mu_{\mathrm{t}} \sim$ iid $\mathrm{N}\left(\mu, \sigma_{\mathrm{A}}^{2}\right)$

$$
\mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \text { where } \epsilon_{\mathrm{ti}} \sim \mathrm{iid} \mathrm{~N}\left(0, \sigma^{2}\right)
$$

B. $\quad \tau_{\mathrm{t}} \sim \operatorname{iid} \mathrm{N}\left(0, \sigma_{\mathrm{A}}^{2}\right)$

$$
\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \text { where } \epsilon_{\mathrm{ti}} \sim \text { iid } \mathbf{N}\left(0, \sigma^{2}\right)
$$

$\longrightarrow \quad$ We add another layer of sampling.

Hypothesis testing

\rightarrow In the standard ANOVA model, we considered the μ_{t} as fixed but unknown quantities.

We test the hypothesis $\mathrm{H}_{0}: \mu_{1}=\cdots=\mu_{\mathrm{k}}$ (versus H_{0} is false) using the statistic M_{B} / M_{W} from the ANOVA table and the comparing this to an $\mathrm{F}(\mathrm{k}-1, \mathrm{~N}-\mathrm{k})$ distribution.
\rightarrow In the random effects model, we consider the μ_{t} as random draws from a normal distribution with mean μ and variance σ_{A}^{2}. We seek to test the hypothesis $\mathrm{H}_{0}: \sigma_{\mathrm{A}}^{2}=0$ versus $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{A}}^{2}>0$.

As it turns out, we end up with the same test statistic and same null distribution. For one-way ANOVA, that is!

Estimation

For the random effects model it can be shown that

$$
\mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2}+\mathrm{n}_{0} \times \sigma_{\mathrm{A}}^{2}
$$

where

$$
n_{0}=\frac{1}{k-1}\left(N-\frac{\sum_{t} n_{t}^{2}}{\sum_{t} n_{t}}\right)
$$

Recall also that $\mathrm{E}\left(\mathrm{M}_{\mathrm{W}}\right)=\sigma^{2}$.

Thus, we may estimate σ^{2} by $\hat{\sigma}^{2}=\mathrm{M}_{\mathrm{w}}$.
And we may estimate σ_{A}^{2} by $\hat{\sigma}_{\mathrm{A}}^{2}=\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{W}}\right) / \mathrm{n}_{0}$ (provided that this is ≥ 0).

Random effects example

Random effects example

The samples sizes for the 8 subjects were (14, 12, 11, 10, 10, 11, 15,9), for a total sample size of 92 . Thus, $n_{0} \approx 11.45$.

source	SS	df	MS	F	P-value
between subjects	1485	7	212	4.60	0.0002
within subjects	3873	84	46		
total	5358	91			

We have $M_{B}=212$ and $M_{W}=46$. Thus

$$
\begin{align*}
& \hat{\sigma}=\sqrt{46}=6.8 \\
& \hat{\sigma}_{\mathrm{A}}=\sqrt{(212-46) / 11.45}=3.81 .
\end{align*}
$$

ANOVA assumptions

- Data in each group are a random sample from some population.
- Observations within groups are independent.
- Samples are independent.
- Underlying populations normally distributed.
- Underlying populations have the same variance.
\longrightarrow The Kruskal-Wallis test is a non-parametric rank-based approach to assess differences in means.
\longrightarrow In the case of two groups, the Kruskal-Wallis test reduces exactly to the Wilcoxon rank-sum test.
\longrightarrow This is just like how ANOVA with two groups is equivalent to the two-sample t test.

Multiple comparisons

When we carry out an ANOVA on k treatments, we test

$$
\mathrm{H}_{0}: \mu_{1}=\cdots=\mu_{\mathrm{k}} \quad \text { versus } \quad \mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0} \text { is false }
$$

Assume we reject the null hypothesis, i.e. we have some evidence that not all treatment means are equal. Then we could for example be interested in which ones are the same, and which ones differ. For this, we might have to carry out some more hypothesis tests.
\longrightarrow This procedure is referred to as multiple comparisons.

Key issue

We will be conducting, say, \mathbf{T} different tests, and we become concerned about the overall error rate (sometimes called the familywise error rate).

Overall error rate $=\operatorname{Pr}\left(\right.$ reject at least one $\mathrm{H}_{0} \mid$ all H_{0} are true)

$$
\begin{cases}=1-\left\{1-\operatorname{Pr}\left(\text { reject first } \mid \text { first } \mathrm{H}_{0} \text { is true }\right)\right\}^{\top} & \text { if independent } \\ \leq \mathrm{T} \times \operatorname{Pr}\left(\text { reject first } \mid \text { first } \mathrm{H}_{0} \text { is true }\right) & \text { generally }\end{cases}
$$

Types of multiple comparisons

There are two different types of multiple comparisons procedures:
Sometimes we already know in advance what questions we want to answer. Those comparisons are called planned (or a priori) comparisons.

Sometimes we do not know in advance what questions we want to answer, and the judgement about which group means will be studied the same depends on the ANOVA outcome. Those comparisons are called unplanned (or a posteriori) comparisons.

Former example

We previously investigated whether the mean blood coagulation times for subjects receiving different treatments (A, B, C or D) were the same.

Imagine A is the standard treatment, and we wish to compare each of treatments B, C, D to treatment A.
\longrightarrow planned comparisons!

After inspecting the treatment means, we find that A and D look similar, and B and C look similar, but A and D are quite different from B and C. We might want to formally test the hypothesis $\mu_{\mathrm{A}}=\mu_{\mathrm{D}} \neq \mu_{\mathrm{B}}=\mu_{\mathrm{C}}$.
\longrightarrow unplanned comparisons!

Adjusting the significance level

Assume the investigator plans to make T independent significance tests, all at the significance level α^{\prime}. If all the null hypothesis are true, the probability of making no Type I error is $\left(1-\alpha^{\prime}\right)^{\top}$. Hence the overall significance level is

$$
\alpha=1-\left(1-\alpha^{\prime}\right)^{\top}
$$

Solving the above equation for α^{\prime} yields

$$
\alpha^{\prime}=1-(1-\alpha)^{\frac{1}{1}}
$$

The above adjustment is called the Dunn - Sidak method.

An alternative method

In the literature, investigators often use

$$
\alpha^{\prime \prime}=\frac{\alpha}{\mathrm{T}}
$$

where T is the number of planned comparisons.

This adjustment is called the Bonferroni method.

"Unplanned" comparisons

Suppose we are comparing k treatment groups.
Suppose ANOVA indicates that you reject $\mathrm{H}_{0}: \mu_{1}=\cdots=\mu_{\mathrm{k}}$

What next?
Which of the μ 's are different from which others?

Consider testing $\mathrm{H}_{0}: \mu_{\mathrm{i}}=\mu_{\mathrm{j}}$ for all pairs i, j.
There are $\binom{k}{2}=\frac{k(k-1)}{2}$ such pairs.

$$
\begin{aligned}
& \mathrm{k}=5 \quad \longrightarrow \quad\binom{\mathrm{k}}{2}=10 . \\
& \mathrm{k}=10 \quad \longrightarrow \quad\binom{\mathrm{k}}{2}=45 .
\end{aligned}
$$

Bonferroni correction

Suppose we have 10 treatment groups, and so 45 pairs.
If we perform 45 t-tests at the significance level $\alpha=0.05$, we would expect to reject $5 \% \times 45 \approx 2$ of them, even if all of the means were the same.

Let $\alpha=\operatorname{Pr}$ (reject at least one pairwise test \mid all μ 's the same)
$\leq($ no. tests $) \times \operatorname{Pr}($ reject test \#1 $\mid \mu$'s the same $)$
The Bonferroni correction:
Use $\alpha^{\prime}=\alpha /($ no. tests) as the significance level for each test.
For example, with 10 groups and so 45 pairwise tests, we would use $\alpha^{\prime}=0.05 / 45 \approx 0.0011$ for each test.

Blood coagulation time

Pairwise comparisons

Comparison	p-value	$\alpha^{\prime \prime}=\frac{\alpha}{\mathrm{k}}=\frac{0.05}{6}=0.0083$
A vs B	0.004	
A vs C	0.001	1.000
A vs D	0.159	
B vs C	<0.001	
B vs D	<0.001	

Another example

ANOVA table

Source
Between treatment 1077.3
$245.5 \quad 45 \quad 5.5$
4269.3

Within treatment

SS Df MS F-value p-value
$49.4<0.001$
$\binom{5}{2}=10$ pairwise comparisons $\quad \longrightarrow \quad \alpha^{\prime}=0.05 / 10=0.005$
For each pair, consider $T_{i, j}=\left(\bar{Y}_{i .}-\bar{Y}_{j}\right) /\left(\hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}\right)$
Use $\hat{\sigma}=\sqrt{\mathrm{M}_{\mathrm{W}}} \quad\left(\mathrm{M}_{\mathrm{W}}=\right.$ within-group mean square $)$ and refer to a t distribution with $\mathrm{df}=45$.

A comparison

Uncorrected:

Each interval, individually, had (in advance) a 95% chance of covering the true mean difference.

Corrected:
(In advance) there was a greater than 95% chance that all of the intervals would cover their respective parameters.

Newman-Keuls procedure

Goal: | Identify sets of treatments whose mean re- |
| :--- |
| sponses are not significantly different. |
| (Assuming equal sample sizes for the treatment groups.) |

Procedure: 1. Calculate the group sample means.
2. Order the sample means from smallest to largest.
3. Calculate a triangular table of all pairwise sample means.
4. Calculate $\mathrm{q}_{\mathrm{i}}=\mathrm{Q}_{\alpha}(\mathrm{i}, \mathrm{df})$ for $\mathrm{i}=2,3, \ldots, \mathrm{k}$.

The Q is called the studentized range distribution!
5. Calculate $R_{i}=q_{i} \times \sqrt{M_{w} / n}$.

Newman-Keuls procedure (continued)

Procedure:

6. If the difference between the biggest and the smallest means is less than R_{k}, draw a line under all of the means and stop.
7. Compare the second biggest and the smallest (and the second-smallest and the biggest) to R_{k-1}. If observed difference is smaller than the critical value, draw a line between these means.
8. Continue to look at means for which a line connecting them has not yet been drawn, comparing the difference to R_{i} with progressively smaller i's.

Example

Sorted sample means:

A	F	G	S	C
58.0	58.2	59.3	64.1	70.1

Table of differences:

	F	G	S	C
A	0.2	1.3	6.1	12.1
F		1.1	5.9	11.9
G			4.8	10.0
S				6.0

Example (continued)

From the ANOVA table:
$M_{W}=5.46 \quad n=10$ for each group $\quad \sqrt{M_{W} / 10}=0.739 \quad \mathrm{df}=45$

The q_{i} (using $\mathrm{df}=45$ and $\alpha=0.05$):

q_{2}	q_{3}	q_{4}	q_{5}
2.85	3.43	3.77	4.02

$R_{i}=q_{i} \times \sqrt{M_{W} / 10}:$
$\begin{array}{llll}R_{2} & R_{3} & R_{4} & R_{5}\end{array}$
$\begin{array}{llll}2.10 & 2.53 & 2.79 & 2.97\end{array}$

Example (continued)

Table of differences:

	F	G	S	C
A	0.2	1.3	6.1	12.1
F		1.1	5.9	11.9
G			4.8	10.0
S				6.0

$$
R_{i}=q_{i} \times \sqrt{M_{W} / 10}:
$$

R_{2}	R_{3}	R_{4}	R_{5}
2.10	2.53	2.79	2.97

Results

Sorted sample means:

A	F	G	S	C
58.0	58.2	59.3	64.1	70.1

Interpretation:

$$
\mathrm{A} \approx \mathrm{~F} \approx \mathrm{G}<\mathrm{S}<\mathrm{C}
$$

Another example

Sorted sample means:
D
C
A
B
E
29.6
32.9
40.0
40.7
48.8
\qquad

Interpretation:

$$
\{\mathrm{D}, \mathrm{C}, \mathrm{~A}, \mathrm{~B}\}<\mathrm{E} \quad \text { and } \quad \mathrm{D}<\{\mathrm{A}, \mathrm{~B}\}
$$

Nested ANOVA: Example

We have:
$\longrightarrow 3$ hospitals
$\longrightarrow 4$ subjects within each hospital
$\longrightarrow 2$ independent measurements per subject

Hospital I				Hospital II				Hospital III			
1	2	3	4	1	2	3	4	1	2	3	4
58.5	77.8	84.0	70.1	69.8	56.0	50.7	63.8	56.6	77.8	69.9	62.1
59.5	80.9	83.6	68.3	69.8	54.5	49.3	65.8	57.5	79.2	69.2	64.5

The model

Nested ANOVA: models

$$
\mathrm{Y}_{\mathrm{ijk}}=\mu+\alpha_{\mathrm{i}}+\beta_{\mathrm{ij}}+\epsilon_{\mathrm{ijk}}
$$

$\mu=$ overall mean
$\alpha_{i}=$ "effect" for ith hospital
$\beta_{\mathrm{ij}}=$ "effect" for jth subject within ith hospital
$\epsilon_{\mathrm{ijk}}=$ random error

Random effects model

$$
\begin{gathered}
\alpha_{\mathrm{i}} \sim \operatorname{Normal}\left(0, \sigma_{\mathrm{A}}^{2}\right) \\
\beta_{\mathrm{ij}} \sim \operatorname{Normal}\left(0, \sigma_{\mathrm{B} \mid \mathrm{A}}^{2}\right) \\
\epsilon_{\mathrm{ijk}} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Mixed effects model

$$
\begin{gathered}
\alpha_{\mathrm{i}} \text { fixed; } \sum \alpha_{\mathrm{i}}=0 \\
\beta_{\mathrm{ij}} \sim \operatorname{Normal}\left(0, \sigma_{\mathrm{B} \mid \mathrm{A}}^{2}\right) \\
\epsilon_{\mathrm{ijk}} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Example: sample means

	Hospital I				Hospital II				Hospital III			
	1	2	3	4	1	2	3	4	1	2	3	4
	58.5	77.8	84.0	70.1	69.8	56.0	50.7	63.8	56.6	77.8	69.9	62.1
	59.5	80.9	83.6	68.3	69.8	54.5	49.3	65.8	57.5	79.2	69.2	64.5
\bar{Y}_{ij}.	59.00	79.35	83.80	69.20	69.80	55.25	50.00	64.80	57.05	78.50	69.55	63.30
\bar{Y}_{i}.	72.84				59.96				67.10			
$\bar{Y} \ldots$	66.63											

Calculations (equal sample sizes)

Source

among groups
subgroups within groups
within subgroups

TOTAL

Sum of squares
$S_{\text {among }}=$ bn $\sum_{\mathrm{i}}\left(\bar{Y}_{\mathrm{i} . .}-\overline{\mathrm{Y}} . . .\right)^{2}$
$\mathrm{SS}_{\text {subgr }}=\mathrm{n} \sum_{\mathrm{i}} \sum_{\mathrm{j}}\left(\overline{\mathrm{Y}}_{\mathrm{ij} .}-\overline{\mathrm{Y}}_{\mathrm{i} . .}\right)^{2}$ $a(b-1)$
$S S_{\text {within }}=\sum_{i} \sum_{\mathrm{j}} \sum_{\mathrm{k}}\left(\mathrm{Y}_{\mathrm{ijk}}-\overline{\mathrm{Y}}_{\mathrm{ij} .}\right)^{2}$ $a b(n-1)$
$\sum_{\mathrm{i}} \sum_{\mathrm{j}} \sum_{\mathrm{k}}\left(\mathrm{Y}_{\mathrm{ijk}}-\overline{\mathrm{Y}} \ldots\right)^{2}$
$a b n-1$

ANOVA table

SS
df
MS
F

expected MS

$S_{\text {among }}$
$a-1$
$\frac{\mathrm{SS}_{\text {among }}}{\mathrm{a}-1}$
$\frac{\mathrm{MS}_{\text {among }}}{\mathrm{MS}_{\text {subgr }}}$
$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{B} \mid \mathrm{A}}^{2}+\mathrm{nb} \sigma_{\mathrm{A}}^{2}$
$\mathrm{SS}_{\text {subgr }}$
$a(b-1)$
$\frac{S S_{\text {subgr }}}{a(b-1)}$
$\frac{\mathrm{MS}}{\text { subgr }}$ $\mathrm{MS}_{\text {within }}$
$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{B} \mid \mathrm{A}}^{2}$
$\mathrm{SS}_{\text {within }}$
$a b(n-1) \quad \frac{S S_{\text {within }}}{a b(n-1)}$
σ^{2}
$\mathrm{SS}_{\text {total }}$
$a b n-1$

Example

| source | df | SS | MS | F | P-value |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| among groups | 2 | 665.68 | 332.84 | 1.74 | 0.23 |
| among subgroups within groups | 9 | 1720.68 | 191.19 | 146.88 | <0.001 |
| within subgroups | 12 | 15.62 | 1.30 | | |
| TOTAL | 23 | 2401.97 | | | |

Variance components

Within subgroups (error; between measurements on each subject)
$\mathrm{s}^{2}=\mathrm{MS}_{\text {within }}=1.30$

$$
\mathrm{s}=\sqrt{1.30}=1.14
$$

Among subgroups within groups (among subjects within hospitals)
$\mathrm{s}_{\mathrm{B} \mid \mathrm{A}}^{2}=\frac{\mathrm{MS}_{\text {subgr }}-\mathrm{MS}_{\text {within }}}{\mathrm{n}}=\frac{191.19-1.30}{2}=94.94 \quad \mathrm{~S}_{\mathrm{B} \mid \mathrm{A}}=\sqrt{94.94}=9.74$

Among groups (among hospitals)
$\mathrm{S}_{\mathrm{A}}^{2}=\frac{\mathrm{MS}_{\text {among }}-\mathrm{MS}_{\text {subgr }}}{\mathrm{nb}}=\frac{332.84-191.19}{8}=17.71$
$\mathrm{S}_{\mathrm{A}}=\sqrt{17.71}=4.21$

Variance components (2)

$$
s^{2}+s_{B \mid A}^{2}+s_{A}^{2}=1.30+94.94+17.71=113.95
$$

$$
\begin{aligned}
& s^{2} \text { represents } \frac{1.30}{113.95}=1.1 \% \\
& s_{\mathrm{B} \mid \mathrm{A}}^{2} \text { represents } \frac{94.94}{113.95}=83.3 \% \\
& \mathrm{~s}_{\mathrm{A}}^{2} \text { represents } \frac{17.71}{113.95}=15.6 \%
\end{aligned}
$$

Note:
$\longrightarrow \operatorname{var}(\mathrm{Y})=\sigma^{2}+\sigma_{\mathrm{B} \mid \mathrm{A}}^{2}+\sigma_{\mathrm{A}}^{2}$
$\longrightarrow \operatorname{var}(\mathrm{Y} \mid \mathrm{A})=\sigma^{2}+\sigma_{\mathrm{B} \mid \mathrm{A}}^{2}$
$\longrightarrow \operatorname{var}(\mathrm{Y} \mid \mathrm{A}, \mathrm{B})=\sigma^{2}$

Subject averages

I-1	$\mathrm{I}-2$	$\mathrm{I}-3$	$\mathrm{I}-4$	$\mathrm{II}-1$	$\mathrm{II}-2$	$\mathrm{II}-3$	$\mathrm{II}-4$	$\mathrm{III}-1$	$\mathrm{III}-2$	$\mathrm{III}-3$	$\mathrm{III}-4$
58.5	77.8	84.0	70.1	69.8	56.0	50.7	63.8	56.6	77.8	69.9	62.1
59.5	80.9	83.6	68.3	69.8	54.5	49.3	65.8	57.5	79.2	69.2	64.5
ave	59.0	79.4	83.8	69.2	69.8	55.2	50.0	64.8	57.0	78.5	69.6
63.3											

ANOVA table

source	df	SS	MS	F	P-value
between	2	332.8	166.4	1.74	0.23
within	9	860.3	95.6		

Higher-level nested ANOVA models

You can have as many levels as you like. For example, here is a three-level nested mixed ANOVA model:

$$
\mathrm{Y}_{\mathrm{ijk} \mathrm{l}}=\mu+\alpha_{\mathrm{i}}+\mathrm{B}_{\mathrm{ij}}+\mathrm{C}_{\mathrm{ijk}}+\epsilon_{\mathrm{ijk}}
$$

Assumptions: $\quad \mathrm{B}_{\mathrm{ij}} \sim \mathrm{N}\left(0, \sigma_{\mathrm{B} \mid \mathrm{A}}^{2}\right), \quad \mathrm{C}_{\mathrm{ijk}} \sim \mathrm{N}\left(0, \sigma_{\mathrm{C} \mid \mathrm{B}}^{2}\right), \quad \epsilon_{\mathrm{ijkl}} \sim \mathrm{N}\left(0, \sigma^{2}\right)$.

Calculations

Source
among groups
among subgroups
among subsubgroups
within subsubgroups

Sum of squares
$\mathrm{SS}_{\text {among }}=\mathrm{bcn} \sum_{\mathrm{i}}\left(\bar{Y}_{\mathrm{i} . . .}-\overline{\mathrm{Y}} \ldots . .\right)^{2}$ df
$\mathrm{SS}_{\text {subgr }}=\mathrm{cn} \sum_{\mathrm{i}} \sum_{\mathrm{j}}\left(\overline{\mathrm{Y}}_{\mathrm{ij} . .}-\overline{\mathrm{Y}}_{\mathrm{i} . . .}\right)^{2}$ $a(b-1)$
$\mathrm{SS}_{\text {subsubgr }}=\mathrm{n} \sum_{\mathrm{i}} \sum_{\mathrm{j}} \sum_{\mathrm{k}}\left(\overline{\mathrm{Y}}_{\mathrm{ijk} .}-\overline{\mathrm{Y}}_{\mathrm{ij} . .}\right)^{2}$ $a b(c-1)$
$S S_{\text {subsubgr }}=\sum_{\mathrm{i}} \sum_{\mathrm{j}} \sum_{\mathrm{k}} \sum_{\mathrm{l}}\left(\mathrm{Y}_{\mathrm{ijkl}}-\overline{\mathrm{Y}}_{\mathrm{ijk}}\right)^{2}$ abc ($n-1$)

ANOVA table

SS	MS	F	expected MS
SS $_{\text {among }}$	$\frac{\mathrm{bcn} \sum_{\mathrm{a}}\left(\bar{Y}_{\mathrm{A}}-\overline{\mathrm{Y}}\right)^{2}}{\mathrm{a}-1}$	$\frac{\mathrm{MS}_{\text {among }}}{\mathrm{MS}_{\text {subgr }}}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{C} \subset \mathrm{B}}^{2}+\mathrm{nc} \sigma_{\mathrm{B} \subset \mathrm{A}}^{2}+\mathrm{ncb} \frac{\sum_{\alpha^{2}}^{\mathrm{a}-1}}{}$
$\mathrm{SS}_{\text {subgr }}$	$\frac{\mathrm{cn} \sum_{\mathrm{a}} \sum_{\mathrm{b}}\left(\overline{\mathrm{Y}}_{\mathrm{B}}-\overline{\mathrm{Y}}_{\mathrm{A}}\right)^{2}}{\mathrm{a}(\mathrm{b}-1)}$	$\frac{\mathrm{MS}_{\text {subgr }}}{\mathrm{MS}_{\text {subsubgr }}}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{C} \subset \mathrm{B}}^{2}+\mathrm{nc} \sigma_{\mathrm{B} \subset \mathrm{A}}^{2}$
$\mathrm{SS}_{\text {subsubgr }}$	$\frac{\mathrm{n} \sum_{\mathrm{a}} \sum_{\mathrm{b}} \sum_{\mathrm{c}}\left(\overline{\mathrm{Y}}_{\mathrm{C}}-\overline{\mathrm{Y}}_{\mathrm{B}}\right)^{2}}{\mathrm{ab}(\mathrm{c}-1)}$	$\frac{\mathrm{MS}_{\text {subsubgr }}}{\mathrm{MS}_{\text {within }}}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{C} \subset \mathrm{B}}^{2}$
$\mathrm{SS}_{\text {within }}$	$\frac{\sum_{\mathrm{a}} \sum_{\mathrm{b}} \sum_{\mathrm{c}} \sum_{\mathrm{n}}\left(\mathrm{Y}-\overline{\mathrm{Y}}_{\mathrm{C}}\right)^{2}}{\mathrm{abc}(\mathrm{n}-1)}$		σ^{2}

Unequal sample size

It is best to design your studies such that you have equal sample sizes in each cell. However, once in a while this is not possible.

In the case of unequal sample sizes, the calculations become really painful (though a computer can do all of the calculations for you).

Even worse, the F tests for the upper levels in the ANOVA table no longer have a clear null distribution.
\longrightarrow Maximum likelihood methods are more complicated, but can solve this problem.

Two-way ANOVA

	Treatment	
Gender	1	2
	Male	709
	679	592
	699	476
		657
	594	508
	677	539

Let
r be the number of rows in the two-way ANOVA,
c be the number of columns in the two-way ANOVA,
$n \quad$ be the number of observations within each of those $r \times c$ groups.

A picture

All sorts of means

Treatment
Gender

Male	695.67	535.33	615.50
Female	642.67	517.33	580.00
	669.17	526.33	597.75

\longrightarrow This table shows the cell, row, and column means, plus the overall mean.

Two-way ANOVA table

source
between rows
between columns
interaction
error
total

Example

source	sum of squares	df	mean squares
sex	3781	1	3781
treatment	61204	1	61204
interaction	919	1	919
error	11667	8	1458

The ANOVA model

Let $Y_{i j k}$ be the $k^{\text {th }}$ item in the subgroup representing the $i^{\text {th }}$ group of factor A (r levels) and the $j^{\text {th }}$ group of factor B (c levels). We write

$$
\mathrm{Y}_{\mathrm{ijk}}=\mu+\alpha_{\mathrm{i}}+\beta_{\mathrm{j}}+\gamma_{\mathrm{ij}}+\epsilon_{\mathrm{ijk}}
$$

The corresponding analysis of the data is

$$
y_{\mathrm{ijk}}=\overline{\mathrm{y}} \ldots_{\ldots}+\left(\overline{\mathrm{y}}_{\mathrm{i} . .}-\overline{\mathrm{y}}_{\ldots} . .\right)+\left(\overline{\mathrm{y}}_{\mathrm{j} .}-\overline{\mathrm{y}}_{\ldots}\right)+\left(\overline{\mathrm{y}}_{\mathrm{ij} .}-\overline{\mathrm{y}}_{\mathrm{i} . .}-\overline{\mathrm{y}}_{\mathrm{j} .}+\overline{\mathrm{y}}_{\ldots}\right)+\left(\mathrm{y}_{\mathrm{ijk}}-\overline{\mathrm{y}}_{\mathrm{ij} .} .\right)
$$

Towards hypothesis testing

error

$$
\frac{\sum_{\mathrm{i}} \sum_{\mathrm{j}} \sum_{\mathrm{k}}\left(\mathrm{Y}_{\mathrm{ijk}}-\bar{Y}_{\mathrm{ij}} .\right)^{2}}{\mathrm{rc}(\mathrm{n}-1)}
$$

$$
\sigma^{2}
$$

Example (continued)

source	SS	df	MS	F	p-value
sex	3781	1	3781	2.6	0.1460
treatment	61204	1	61204	42.0	0.0002
interaction	919	1	919	0.6	0.4503
error	11667	8	1458		

Interaction in a 2-way ANOVA model

Let $\mathrm{Y}_{\mathrm{ijk}}$ be the $\mathrm{k}^{\text {th }}$ item in the subgroup representing the $\mathrm{i}^{\text {th }}$ group of factor A (r levels) and the $j^{\text {th }}$ group of factor B (c levels). We write

$$
\mathrm{Y}_{\mathrm{ijk}}=\mu+\alpha_{\mathrm{i}}+\beta_{\mathrm{j}}+\gamma_{\mathrm{ij}}+\epsilon_{\mathrm{ijk}}
$$

Expected mean squares

source	fixed effects	random effects	mixed effects
between rows	$\sigma^{2}+\frac{\mathrm{ch}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{cn} \sigma_{\mathrm{R}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\frac{\mathrm{c} \mathrm{n}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$
between columns	$\sigma^{2}+\frac{\mathrm{rn}}{\mathrm{c}-1} \sum_{\mathrm{j}} \beta_{\mathrm{j}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{rn} \sigma_{\mathrm{C}}^{2}$	$\sigma^{2} \quad+\mathrm{rn} \sigma_{\mathrm{C}}^{2}$
interaction	$\sigma^{2}+\frac{\mathrm{n}}{(\mathrm{r}-1)(\mathrm{c}-1)} \sum_{\mathrm{i}} \sum_{\mathrm{j}} \gamma_{\mathrm{ij}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}$
error	σ^{2}	σ^{2}	σ^{2}

Two-way ANOVA without replicates

Physician

60	9.6	9.3	9.3
80	10.6	9.1	9.2
160	9.8	9.3	9.5
320	10.7	9.1	10.0
640	11.1	11.1	10.4
1280	10.9	11.8	10.8
2560	12.8	10.6	10.7

ANOVA table

source	df	SS	MS
physician	2	2.79	1.39
concentration	6	12.54	2.09
interaction	12	4.11	0.34
total	20		

We have 21 observations. That means we have no degrees of freedom left to estimate an error!

Expected mean squares

In general, we have:

source	fixed effects	random effects	mixed effects
between rows	$\sigma^{2}+\frac{\mathrm{c} \mathrm{n}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{cn} \sigma_{\mathrm{R}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\frac{\mathrm{c} \mathrm{n}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$
between columns	$\sigma^{2}+\frac{\mathrm{rn}}{\mathrm{c}-1} \sum_{\mathrm{j}} \beta_{\mathrm{j}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{rn} \sigma_{\mathrm{C}}^{2}$	$\sigma^{2} \quad+\mathrm{rn} \sigma_{\mathrm{C}}^{2}$
interaction	$\sigma^{2}+\frac{\mathrm{n}}{(\mathrm{r}-1)(\mathrm{c}-1)} \sum_{\mathrm{i}} \sum_{\mathrm{j}} \gamma_{\mathrm{ij}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}$	$\sigma^{2}+\mathrm{n} \sigma_{\mathrm{R} \times \mathrm{C}}^{2}$
error	σ^{2}	σ^{2}	σ^{2}

Expected mean squares

If $n=1$ and there is no interaction in truth, we have:

source	fixed effects	random effects	mixed effects
between rows	$\sigma^{2}+\frac{\mathrm{C}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$	$\sigma^{2}+\mathbf{c} \sigma_{\mathrm{R}}^{2}$	$\sigma^{2}+\frac{\mathrm{c}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$
between columns	$\sigma^{2}+\frac{\mathrm{r}}{\mathrm{C}-1} \sum_{\mathrm{j}} \beta_{\mathrm{j}}^{2}$	$\sigma^{2}+\mathrm{r} \sigma_{\mathrm{C}}^{2}$	$\sigma^{2}+\mathrm{r} \sigma_{\mathrm{C}}^{2}$
error	σ^{2}	σ^{2}	σ^{2}

Expected mean squares

If $\mathrm{n}=1$ but there is an interaction, we have:

source	fixed effects	random effects	mixed effects
between rows	$\sigma^{2}+\frac{\mathrm{C}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$	$\sigma^{2}+\sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{C} \sigma_{\mathrm{R}}^{2}$	$\sigma^{2}+\sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\frac{\mathrm{c}}{\mathrm{r}-1} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}$
between columns	$\sigma^{2}+\frac{\mathrm{r}}{\mathrm{C}-1} \sum_{\mathrm{j}} \beta_{\mathrm{j}}^{2}$	$\sigma^{2}+\sigma_{\mathrm{R} \times \mathrm{C}}^{2}+\mathrm{r} \sigma_{\mathrm{C}}^{2}$	$\sigma^{2} \quad+\mathrm{r} \sigma_{\mathrm{C}}^{2}$
interaction	$\sigma^{2}+\frac{1}{(\mathrm{r}-1)(\mathrm{C}-1)} \sum_{\mathrm{i}} \sum_{\mathrm{j}} \gamma_{\mathrm{ij}}^{2}$	$\sigma^{2}+\sigma_{\mathrm{R} \times \mathrm{C}}^{2}$	$\sigma^{2}+\sigma_{\mathrm{R} \times \mathrm{C}}^{2}$
error	σ^{2}	σ^{2}	σ^{2}

