Correlation and Regression

Fathers' and daughters' heights

Fathers' heights

Daughters' heights

Fathers' and daughters' heights

Covariance and correlation

Let X and Y be random variables with

$$
\mu_{X}=\mathrm{E}(\mathrm{X}), \mu_{Y}=\mathrm{E}(\mathrm{Y}), \sigma_{X}=\mathrm{SD}(\mathrm{X}), \sigma_{Y}=\mathrm{SD}(\mathrm{Y})
$$

For example, sample a father/daughter pair and let

$$
X=\text { the father's height and } Y=\text { the daughter's height. }
$$

Covariance

$$
\operatorname{cov}(X, Y)=E\left\{\left(X-\mu_{X}\right)\left(\mathbf{Y}-\mu_{\mathrm{Y}}\right)\right\}
$$

$$
\operatorname{cor}(\mathrm{X}, \mathrm{Y})=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}}
$$

$$
\longrightarrow-1 \leq \operatorname{cor}(X, Y) \leq 1
$$

Examples

Estimated correlation

Consider n pairs of data:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

We consider these as independent draws from some bivariate distribution.

We estimate the correlation in the underlying distribution by:

$$
r=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}
$$

This is sometimes called the correlation coefficient.

Correlation measures linear association

\longrightarrow All three plots have correlation ≈ 0.7 !

Correlation versus regression

\longrightarrow Covariance / correlation:

- Quantifies how two random variables X and Y co-vary.
- There is typically no particular order between the two random variables (e. g. , fathers' versus daughters' height).
\longrightarrow Regression
- Assesses the relationship between predictor X and response Y : we model $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]$.
- The values for the predictor are often deliberately chosen, and are therefore not random quantities.
- We typically assume that we observe the values for the predictor(s) without error.

Example

Measurements of degradation of heme with different concentrations of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, for different types of heme.

Linear regression

Linear regression

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ from X and Y .

The simple linear regression model is

$$
\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{i}}+\epsilon_{\mathrm{i}}, \quad \epsilon_{\mathrm{i}} \sim \mathrm{iid} \mathrm{~N}\left(0, \sigma^{2}\right) .
$$

This implies:

$$
\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]=\beta_{0}+\beta_{1} \mathrm{X}
$$

Interpretation:
For two subjects that differ by one unit in X , we expect the responses to differ by β_{1}.
\longrightarrow How do we estimate $\beta_{0}, \beta_{1}, \sigma^{2}$?

Fitted values and residuals

We can write

$$
\epsilon_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-\beta_{0}-\beta_{1} \mathrm{x}_{\mathrm{i}}
$$

For a pair of estimates $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ for the pair of parameters $\left(\beta_{0}, \beta_{1}\right)$ we define the fitted values as

$$
\hat{y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
$$

The residuals are

$$
\hat{\epsilon}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Residuals

Residual sum of squares

For every pair of values for β_{0} and β_{1} we get a different value for the residual sum of squares.

$$
\operatorname{RSS}\left(\beta_{0}, \beta_{1}\right)=\sum_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

We can look at RSS as a function of β_{0} and β_{1}. We try to minimize this function, i. e. we try to find

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\min _{\beta_{0}, \beta_{1}} \operatorname{RSS}\left(\beta_{0}, \beta_{1}\right)
$$

Hardly surprising, this method is called least squares estimation.

Residual sum of squares

Notation

Assume we have n observations: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$.

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i} x_{i}}{n} \\
\bar{y} & =\frac{\sum_{i} y_{i}}{n} \\
S X X & =\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i} x_{i}^{2}-n(\bar{x})^{2} \\
S Y Y & =\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i} y_{i}^{2}-n(\bar{y})^{2} \\
S X Y & =\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i} x_{i} y_{i}-n \bar{x} \bar{y} \\
R S S & =\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i} \hat{\epsilon}_{i}^{2}
\end{aligned}
$$

Parameter estimates

The function

$$
\operatorname{RSS}\left(\beta_{0}, \beta_{1}\right)=\sum_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

is minimized by

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{S X Y}{S X X} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

Useful to know

Using the parameter estimates, our best guess for any y given x is

$$
y=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

Hence

$$
\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}=\bar{y}-\hat{\beta}_{1} \bar{x}+\hat{\beta}_{1} \bar{x}=\bar{y}
$$

That means every regression line goes through the point (\bar{x}, \bar{y}).

Variance estimates

As variance estimate we use

$$
\hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{n}-2}
$$

This quantity is called the residual mean square. It has the following property:

$$
(\mathrm{n}-2) \times \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{\mathrm{n}-2}^{2}
$$

In particular, this implies

$$
\mathrm{E}\left(\hat{\sigma}^{2}\right)=\sigma^{2}
$$

Example

$\mathrm{H}_{2} \mathrm{O}_{2}$ concentration			
0	10	25	50
0.3399	0.3168	0.2460	0.1535
0.3563	0.3054	0.2618	0.1613
0.3538	0.3174	0.2848	0.1525

We get
$\bar{x}=21.25, \quad \bar{y}=0.27, \quad S X X=4256.25, \quad S X Y=-16.48, \quad R S S=0.0013$.

Therefore
$\hat{\beta}_{1}=\frac{-16.48}{4256.25}=-0.0039, \quad \hat{\beta}_{0}=0.27-(-0.0039) \times 21.25=0.353$,
$\hat{\sigma}=\sqrt{\frac{0.0013}{12-2}}=0.0115$.

Example

Comparing models

We want to test whether $\beta_{1}=0$:

$$
\mathrm{H}_{0}: \mathrm{y}_{\mathrm{i}}=\beta_{0}+\epsilon_{\mathrm{i}} \quad \text { versus } \quad \mathrm{H}_{\mathrm{a}}: \mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{i}}+\epsilon_{\mathrm{i}}
$$

Example

Sum of squares

Under H_{a} :

$$
R S S=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=S Y Y-\frac{(S X Y)^{2}}{S X X}=S Y Y-\hat{\beta}_{1}^{2} \times S X X
$$

Under H_{0} :

$$
\sum_{i}\left(y_{i}-\hat{\beta}_{0}\right)^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=S Y Y
$$

Hence

$$
S S_{\mathrm{reg}}=S Y Y-R S S=\frac{(S X Y)^{2}}{S X X}
$$

ANOVA

MS
F
regression on $X \quad 1 \quad \mathrm{SS}_{\text {reg }} \quad \mathrm{MS}_{\text {reg }}=\frac{\mathrm{SS}_{\text {reg }}}{1} \quad \frac{\mathrm{MS} \text { reg }}{\mathrm{MSE}}$
residuals for full model $n-2$ RSS MSE $=\frac{R S S}{n-2}$
total

$$
\mathrm{n}-1 \quad \mathrm{SYY}
$$

Example

Source	df	SS	MS	F
regression on X	1	0.06378	0.06378	484.1
residuals for full model	10	0.00131	0.00013	
total	11	0.06509		

Parameter estimates

One can show that

$$
\begin{array}{ll}
\mathrm{E}\left(\hat{\beta}_{0}\right)=\beta_{0} & \mathrm{E}\left(\hat{\beta}_{1}\right)=\beta_{1} \\
\operatorname{Var}\left(\hat{\beta}_{0}\right)=\sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{\bar{x}^{2}}{\mathrm{SXX}}\right) & \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\mathrm{SXX}} \\
\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-\sigma^{2} \frac{\overline{\mathrm{x}}}{\mathrm{SXX}} & \operatorname{Cor}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\frac{-\overline{\mathrm{x}}}{\sqrt{\bar{x}^{2}+\mathrm{SXX} / \mathrm{n}}}
\end{array}
$$

Parameter estimates

One can even show that the distribution of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ is a bivariate normal distribution!

$$
\binom{\hat{\beta}_{0}}{\hat{\beta}_{1}} \sim \mathbf{N}(\beta, \Sigma)
$$

where

$$
\beta=\binom{\beta_{0}}{\beta_{1}} \quad \text { and } \quad \Sigma=\sigma^{2}\left(\begin{array}{cc}
\frac{1}{n}+\frac{\bar{x}^{2}}{S X X} & \frac{-\bar{x}}{S X X} \\
\frac{-\bar{x}}{S X X} & \frac{1}{\operatorname{SXX}}
\end{array}\right)
$$

Simulation: coefficients

Possible outcomes

Confidence intervals

We know that

$$
\begin{gathered}
\hat{\beta}_{0} \sim \mathrm{~N}\left(\beta_{0}, \sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{\overline{\mathrm{x}}^{2}}{\mathrm{SXX}}\right)\right) \\
\hat{\beta}_{1} \sim \mathrm{~N}\left(\beta_{1}, \frac{\sigma^{2}}{\mathrm{SXX}}\right)
\end{gathered}
$$

\longrightarrow We can use those distributions for hypothesis testing and to construct confidence intervals!

Statistical inference

We want to test: $\mathrm{H}_{0}: \beta_{1}=\beta_{1}^{\star}$ versus $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq \beta_{1}^{\star} \quad$ (generally, β_{1}^{\star} is 0 .)

We use

$$
\mathrm{t}=\frac{\hat{\beta}_{1}-\beta_{1}^{*}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}_{\mathrm{n}-2} \quad \text { where } \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{\operatorname{SXX}}}
$$

Also,

$$
\left[\hat{\beta}_{1}-\mathrm{t}_{\left(1-\frac{\alpha}{2}\right), \mathrm{n}-2} \times \operatorname{se}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+\mathrm{t}_{\left(1-\frac{\alpha}{2}\right), \mathrm{n}-2} \times \operatorname{se}\left(\hat{\beta}_{1}\right)\right]
$$

is a $(1-\alpha) \times 100 \%$ confidence interval for β_{1}.

Results

The calculations in the test $\mathrm{H}_{0}: \beta_{0}=\beta_{0}^{*}$ versus $\mathrm{H}_{\mathrm{a}}: \beta_{0} \neq \beta_{0}^{*}$ are analogous, except that we have to use

$$
\operatorname{se}\left(\hat{\beta}_{0}\right)=\sqrt{\hat{\sigma}^{2} \times\left(\frac{1}{\mathrm{n}}+\frac{\bar{x}^{2}}{\mathrm{SXX}}\right)}
$$

For the example we get the 95\% confidence intervals

$$
\begin{array}{cl}
(0.342,0.364) & \text { for the intercept } \\
(-0.0043,-0.0035) & \text { for the slope }
\end{array}
$$

Testing whether the intercept (slope) is equal to zero, we obtain 70.7 (- 22.0) as test statistic.

This corresponds to a p-value of $7.8 \times 10^{-15}\left(8.4 \times 10^{-10}\right)$.

Now how about that

Testing for the slope being equal to zero, we use

$$
\mathrm{t}=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}
$$

For the squared test statistic we get

$$
\mathrm{t}^{2}=\left(\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}\right)^{2}=\frac{\hat{\beta}_{1}^{2}}{\hat{\sigma}^{2} / \mathrm{SXX}}=\frac{\hat{\beta}_{1}^{2} \times \mathrm{SXX}}{\hat{\sigma}^{2}}=\frac{(\mathrm{SYY}-\mathrm{RSS}) / 1}{\mathrm{RSS} / \mathrm{n}-2}=\frac{\mathrm{MS}_{\mathrm{reg}}}{\mathrm{MSE}}=\mathrm{F}
$$

\longrightarrow The squared t statistic is the same as the F statistic from the ANOVA!

Joint confidence region

A 95\% joint confidence region for the two parameters is the set of all values $\left(\beta_{0}, \beta_{1}\right)$ that fulfill

$$
\frac{\binom{\Delta \beta_{0}}{\Delta \beta_{1}}^{\top}\left(\begin{array}{cc}
\mathrm{n} & \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \\
\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} & \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}
\end{array}\right)\binom{\Delta \beta_{0}}{\Delta \beta_{1}}}{2 \hat{\sigma}^{2}} \leq \mathrm{F}_{(0.95), 2, \mathrm{n}-2}
$$

where $\Delta \beta_{0}=\beta_{0}-\hat{\beta}_{0}$ and $\Delta \beta_{1}=\beta_{1}-\hat{\beta}_{1}$.

Joint confidence region

Notation

Assume we have n observations: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$.
We previously defined

$$
\begin{aligned}
& S X X=\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i} x_{i}^{2}-n(\bar{x})^{2} \\
& S Y Y=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i} y_{i}^{2}-n(\bar{y})^{2} \\
& S X Y=\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i} x_{i} y_{i}-n \bar{x} \bar{y}
\end{aligned}
$$

We also define
$r_{X Y}=\frac{S X Y}{\sqrt{S X X} \sqrt{S Y Y}} \quad$ (called the sample correlation)

Coefficient of determination

We previously wrote

$$
S S_{\mathrm{reg}}=\mathrm{SYY}-\mathrm{RSS}=\frac{(\mathrm{SXY})^{2}}{\mathrm{SXX}}
$$

Define

$$
R^{2}=\frac{S S_{\text {reg }}}{S Y Y}=1-\frac{R S S}{S Y Y}
$$

R^{2} is often called the coefficient of determination. Notice that

$$
R^{2}=\frac{S S_{r e g}}{S Y Y}=\frac{(S X Y)^{2}}{S X X \times S Y Y}=r_{X Y}^{2}
$$

The Anscombe Data

$\hat{\beta}_{0}=3.0 \hat{\beta}_{1}=0.5 \quad \hat{\sigma}^{2}=13.75 \quad \mathrm{R}^{2}=0.667$

$\hat{\beta}_{0}=3.0 \hat{\beta}_{1}=0.5 \quad \hat{\sigma}^{2}=13.75 \quad \mathrm{R}^{2}=0.667$

Fathers' and daughters' heights

Linear regression

Linear regression

Regression line

SD line

SD line vs regression line

\longrightarrow Both lines go through the point (X, Y).

Predicting father's ht from daughter's ht

Predicting father's ht from daughter's ht

Predicting father's ht from daughter's ht

There are two regression lines!

The equations

Regression of y on x (for predicting y from x)
Slope $=r \frac{S D(y)}{S D(x)} \quad$ Goes through the point (\bar{x}, \bar{y})
$\hat{y}-\bar{y}=r \frac{S D(y)}{S D(x)}(x-\bar{x})$
$\longrightarrow \quad \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x \quad$ where $\hat{\beta}_{1}=r \frac{\operatorname{SD}(\mathrm{y})}{\operatorname{SD}(x)}$ and $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$

Regression of x on y (for predicting x from y)
Slope $=r \frac{S D(x)}{S D(y)} \quad$ Goes through the point (\bar{y}, \bar{x})
$\hat{x}-\bar{x}=r \frac{S D(x)}{S D(y)}(y-\bar{y})$
$\longrightarrow \quad \hat{\mathbf{x}}=\hat{\beta}_{0}^{\star}+\hat{\beta}_{1}^{\star} \mathrm{y}$
where $\hat{\beta}_{1}^{\star}=r \frac{\operatorname{SD}(x)}{\operatorname{SD}(\mathrm{y})}$ and $\hat{\beta}_{0}^{\star}=\overline{\mathrm{x}}-\hat{\beta}_{1}^{\star} \overline{\mathrm{y}}$

Estimating the mean response

\longrightarrow We can use the regression results to predict the expected response for a new concentration of hydrogen peroxide. But what is its variability?

Variability of the mean response

Let \hat{y} be the predicted mean for some x , i. e.

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

Then

$$
\begin{aligned}
\mathrm{E}(\hat{\mathrm{y}}) & =\beta_{0}+\beta_{1} \mathrm{x} \\
\operatorname{var}(\hat{\mathrm{y}}) & =\sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{SXX}}\right)
\end{aligned}
$$

where $\mathrm{y}=\beta_{0}+\beta_{1} \mathrm{x}$ is the true mean response.

Why?

$$
\begin{aligned}
\mathbf{E}(\hat{\mathbf{y}}) & =\mathbf{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} \mathbf{x}\right) \\
& =\mathrm{E}\left(\hat{\beta}_{0}\right)+\mathbf{x E}\left(\hat{\beta}_{1}\right) \\
& =\beta_{0}+\mathbf{x} \beta_{1} \\
\operatorname{var}(\hat{\mathbf{y}}) & =\operatorname{var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} \mathbf{x}\right) \\
& =\operatorname{var}\left(\hat{\beta}_{0}\right)+\operatorname{var}\left(\hat{\beta}_{1} \mathbf{x}\right)+2 \operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1} \mathbf{x}\right) \\
& =\operatorname{var}\left(\hat{\beta}_{0}\right)+\mathbf{x}^{2} \operatorname{var}\left(\hat{\beta}_{1}\right)+2 \mathbf{x} \operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) \\
& =\sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{\overline{\mathrm{x}}^{2}}{\mathrm{SXX}}\right)+\sigma^{2}\left(\frac{\mathbf{x}^{2}}{\mathbf{S X X}}\right)-\frac{2 \mathbf{x} \overline{\mathbf{x}} \sigma^{2}}{\mathrm{SXX}} \\
& =\sigma^{2}\left[\frac{1}{\mathrm{n}}+\frac{(\mathbf{x}-\overline{\mathbf{x}})^{2}}{\mathrm{SXX}}\right]
\end{aligned}
$$

Confidence intervals

Hence

$$
\hat{y} \pm t_{\left(1-\frac{\alpha}{2}\right), n-2} \times \hat{\sigma} \times \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}
$$

is a $(1-\alpha) \times 100 \%$ confidence interval for the mean response given x.

Confidence limits

Prediction

Now assume that we want to calculate an interval for the predicted response y^{\star} for a value of x.

There are two sources of uncertainty:
(a) the mean response
(b) the natural variation σ^{2}

The variance of \hat{y}^{\star} is

$$
\operatorname{var}\left(\hat{\mathrm{y}}^{\star}\right)=\sigma^{2}+\sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{SXX}}\right)=\sigma^{2}\left(1+\frac{1}{\mathrm{n}}+\frac{(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{SXX}}\right)
$$

Prediction intervals

Hence

$$
\hat{y}^{\star} \pm \mathrm{t}_{\left(1-\frac{\alpha}{2}\right), \mathrm{n}-2} \times \hat{\sigma} \times \sqrt{1+\frac{1}{\mathrm{n}}+\frac{(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{SXX}}}
$$

is a $(1-\alpha) \times 100 \%$ prediction interval for the predicted response given x .
\longrightarrow When n is very large, we get roughly

$$
\hat{y}^{\star} \pm \mathrm{t}_{\left(1-\frac{\alpha}{2}\right), \mathrm{n}-2} \times \hat{\sigma}
$$

Prediction intervals

Span and height

With just 100 individuals

Regression for calibration

That prediction interval is for the case that the x's are known without error while

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}+\epsilon \quad \text { where } \epsilon=\text { error }
$$

\longrightarrow Another common situation:

- We have a number of pairs (x, y) to get a calibration line/curve.
- x's basically without error; y's have measurement error.
- We obtain a new value, y^{\star}, and want to estimate the corresponding x^{\star} :

$$
\mathbf{y}^{\star}=\beta_{0}+\beta_{1} \mathbf{x}^{\star}+\epsilon
$$

Example

Another example

Regression for calibration

\longrightarrow Data: $\quad\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{n}$ with $\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{i}}+\epsilon_{\mathrm{i}}, \epsilon_{\mathrm{i}} \sim \operatorname{iid} \operatorname{Normal}(0, \sigma)$
y_{j}^{\star} for $\mathrm{j}=1, \ldots, \mathrm{~m}$
with $\mathrm{y}_{\mathrm{j}}^{\star}=\beta_{0}+\beta_{1} \mathrm{X}^{\star}+\epsilon_{\mathrm{j}}^{\star}, \epsilon_{\mathrm{j}}^{\star} \sim \operatorname{iid} \operatorname{Normal}(0, \sigma)$ for some \mathbf{x}^{\star}
\longrightarrow Goal:
Estimate x^{\star} and give a 95\% confidence interval.
\longrightarrow The estimate:
Obtain $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ by regressing the y_{i} on the x_{i}. Let $\hat{\mathrm{x}}^{\star}=\left(\overline{\mathrm{y}}^{\star}-\hat{\beta}_{0}\right) / \hat{\beta}_{1} \quad$ where $\overline{\mathrm{y}}^{\star}=\sum_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}^{\star} / \mathrm{m}$

$95 \% \mathrm{Cl}$ for $\hat{\mathbf{x}}^{\star}$

Let T denote the 97.5 th percentile of the t distr'n with $\mathrm{n}-2$ d.f.
Let $\mathrm{g}=\mathrm{T} /\left[\left|\hat{\beta}_{1}\right| /(\hat{\sigma} / \sqrt{\mathrm{SXX}})\right]=(\mathrm{T} \hat{\sigma}) /\left(\left|\hat{\beta}_{1}\right| \sqrt{\mathrm{SXX}}\right)$
\longrightarrow If $\mathrm{g} \geq 1$, we would fail to reject $\mathrm{H}_{0}: \beta_{1}=0$! In this case, the $95 \% \mathrm{Cl}$ for $\hat{\mathrm{x}}^{\star}$ is $(-\infty, \infty)$.
\longrightarrow If $\mathrm{g}<1$, our $95 \% \mathrm{Cl}$ is the following:
$\hat{\mathbf{x}}^{\star} \pm \frac{\left(\hat{\mathbf{x}}^{\star}-\overline{\mathbf{x}}\right) \mathrm{g}^{2}+\left(\mathbf{T} \hat{\sigma} /\left|\hat{\beta}_{1}\right|\right) \sqrt{\left(\hat{\mathbf{x}}^{\star}-\overline{\mathbf{x}}\right)^{2} / \mathrm{SXX}+\left(1-\mathrm{g}^{2}\right)\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}\right)}}{1-\mathrm{g}^{2}}$
For very large n , this reduces to approximately $\hat{\mathbf{x}}^{\star} \pm(\mathrm{T} \hat{\sigma}) /\left(\left|\hat{\beta}_{1}\right| \sqrt{\mathrm{m}}\right)$

Example

Another example

Infinite m

Infinite n

Multiple linear regression

Multiple linear regression

Multiple linear regression

More than one predictor

$\#$	Y	X_{1}	X_{2}
1	0.3399	0	0
2	0.3563	0	0
3	0.3538	0	0
4	0.3168	10	0
5	0.3054	10	0
6	0.3174	10	0
7	0.2460	25	0
8	0.2618	25	0
9	0.2848	25	0
10	0.1535	50	0
11	0.1613	50	0
12	0.1525	50	0
13	0.3332	0	1
14	0.3414	0	1
15	0.3299	0	1
16	0.2940	10	1
17	0.2948	10	1
18	0.2903	10	1
19	0.2089	25	1
20	0.2189	25	1
21	0.2102	25	1
22	0.1006	50	1
23	0.1031	50	1
24	0.1452	50	1

The model with two parallel lines can be described as

$$
\mathbf{Y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{2} \mathbf{X}_{2}+\epsilon
$$

In other words (or, equations):

$$
\mathbf{Y}= \begin{cases}\beta_{0}+\beta_{1} X_{1}+\epsilon & \text { if } X_{2}=0 \\ \left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}+\epsilon & \text { if } X_{2}=1\end{cases}
$$

Multiple linear regression

A multiple linear regression model has the form

$$
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\cdots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

The predictors (the X's) can be categorical or numerical.

Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of numerical ones.

Interpretation

Let X_{1} be the age of a subject (in years).

$$
\mathrm{E}[\mathrm{Y}]=\beta_{0}+\beta_{1} \mathrm{X}_{1}
$$

\longrightarrow Comparing two subjects who differ by one year in age, we expect the responses to differ by β_{1}.
\longrightarrow Comparing two subjects who differ by five years in age, we expect the responses to differ by $5 \beta_{1}$.

Interpretation

Let X_{1} be the age of a subject (in years), and let X_{2} be an indicator for the treatment arm (0/1).

$$
\mathrm{E}[\mathrm{Y}]=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}
$$

\longrightarrow Comparing two subjects from the same treatment arm who differ by one year in age, we expect the responses to differ by β_{1}.
\longrightarrow Comparing two subjects of the same age from the two different treatment arms ($\mathrm{X}_{2}=1$ versus $\mathrm{X}_{2}=0$), we expect the responses to differ by β_{2}.

Interpretation

Let X_{1} be the age of a subject (in years), and let X_{2} be an indicator for the treatment arm (0/1).

$$
\mathrm{E}[\mathrm{Y}]=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\beta_{3} \mathrm{X}_{1} \mathrm{X}_{2}
$$

$\longrightarrow \mathrm{E}[\mathrm{Y}]=\beta_{0}+\beta_{1} \mathrm{X}_{1} \quad\left(\mathrm{if} \mathrm{X}_{2}=0\right)$
$\longrightarrow \mathbf{E}[\mathbf{Y}]=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{2}+\beta_{3} \mathbf{X}_{1}=\beta_{0}+\beta_{2}+\left(\beta_{1}+\beta_{3}\right) \mathbf{X}_{1} \quad\left(\mathrm{ff} \mathrm{X}_{2}=1\right)$
\longrightarrow Comparing two subjects who differ by one year in age, we expect the responses to differ by β_{1} if they are in the control arm ($\mathbf{X}_{2}=0$), and expect the responses to differ by $\beta_{1}+\beta_{3}$ if they are in the treatment arm $\left(X_{2}=1\right)$.

Estimation

We have the model

$$
\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{i} 1}+\cdots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{ik}}+\epsilon_{\mathrm{i}}, \quad \epsilon_{\mathrm{i}} \sim \mathrm{iid} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

\longrightarrow We estimate the β 's by the values for which

$$
\operatorname{RSS}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

is minimized where $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{x}_{\mathrm{ik}}$ (aka "least squares").
\longrightarrow We estimate σ by $\quad \hat{\sigma}=\sqrt{\frac{\mathrm{RSS}}{\mathrm{n}-(\mathrm{k}+1)}}$

FYI

Calculation of the $\hat{\beta}$'s (and their SEs and correlations) is not that complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

- The SEs of the $\hat{\beta}$'s involve σ and the x's.
- The $\hat{\beta}$'s are normally distributed.
- Obtain confidence intervals for the β 's using $\hat{\beta} \pm \mathbf{t} \times \widehat{\mathrm{SE}}(\hat{\beta})$ where t is a quantile of t dist' n with $n-(k+1)$ d.f.
- Test $\mathrm{H}_{0}: \beta=0$ using $|\hat{\beta}| / \widehat{\operatorname{SE}}(\hat{\beta})$

Compare this to a t distribution with $\mathrm{n}-(\mathrm{k}+1)$ d.f.

The example: a full model

$\mathrm{x}_{1}=\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$.
$x_{2}=0$ or 1 , indicating type of heme.
$y=$ the OD measurement.

The model: $\quad \mathbf{y}=\beta_{0}+\beta_{1} \mathbf{X}_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{1} \mathbf{X}_{2}+\epsilon$
i.e.,

$$
\begin{gathered}
\mathbf{y}= \begin{cases}\beta_{0}+\beta_{1} X_{1}+\epsilon & \text { if } X_{2}=0 \\
\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{1}+\epsilon & \text { if } X_{2}=1\end{cases} \\
\beta_{2}=0 \quad \longrightarrow \quad \text { Same intercepts. } \\
\beta_{3}=0 \quad \longrightarrow \quad \text { Same slopes. } \\
\beta_{2}=\beta_{3}=0 \quad \longrightarrow \quad \text { Same lines. }
\end{gathered}
$$

Results

Coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	0.35305	0.00544	64.9	$<2 e-16$
x1	-0.00387	0.00019	-20.2	$8.86 e-15$
x2	-0.01992	0.00769	-2.6	0.0175
x1:x2	-0.00055	0.00027	-2.0	0.0563

Residual standard error: 0.0125 on 20 degrees of freedom Multiple R-Squared: 0.98,Adjusted R-squared: 0.977 F-statistic: 326.4 on 3 and 20 DF, p-value: < 2.2e-16

Testing many parameters

We have the model

$$
\mathbf{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{i} 1}+\cdots+\beta_{\mathrm{k}} \mathbf{x}_{\mathrm{ik}}+\epsilon_{\mathrm{i}}, \quad \epsilon_{\mathrm{i}} \sim \operatorname{iid} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

We seek to test $\mathrm{H}_{0}: \beta_{\mathrm{r}+1}=\cdots=\beta_{\mathrm{k}}=0$.

In other words, do we really have just:

$$
\mathbf{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{i} 1}+\cdots+\beta_{\mathrm{r}} \mathbf{x}_{\mathrm{ir}}+\epsilon_{\mathrm{i}}, \quad \epsilon_{\mathrm{i}} \sim \mathrm{iid} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

What to do...

1. Fit the "full" model (with all k x's).
2. Calculate the residual sum of squares, $\mathrm{RSS}_{\text {full }}$.
3. Fit the "reduced" model (with only r x's).
4. Calculate the residual sum of squares, $\mathrm{RSS}_{\text {red }}$.
5. Calculate $F=\frac{\left(\text { RSS }_{\text {red }}-\text { RSS }_{\text {full }} / / \mathrm{df}_{\text {red }}-\mathrm{df}_{\text {full }}\right)}{R S S_{\text {full }} / \mathrm{dffill} .}$ where $\mathrm{df}_{\text {red }}=\mathrm{n}-\mathrm{r}-1$ and $\left.\mathrm{df}_{\text {full }}=\mathrm{n}-\mathrm{k}-1\right)$.
6. Under $\mathrm{H}_{0}, \mathrm{~F} \sim \mathrm{~F}\left(\mathrm{df}_{\text {red }}-\mathrm{df}_{\text {full }}, \mathrm{df}_{\text {full }}\right)$.

In particular...

Assume the model

$$
\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{i} 1}+\cdots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{ik}}+\epsilon_{\mathrm{i}}, \quad \epsilon_{\mathrm{i}} \sim \mathrm{iid} \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

We seek to test $\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{\mathrm{k}}=0$ (i.e., none of the x's are related to y).
\longrightarrow Full model: All the x's
\longrightarrow Reduced model: $\quad \mathrm{y}=\beta_{0}+\epsilon \quad \mathrm{RSS}_{\text {red }}=\sum_{i}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$
$\longrightarrow F=\left[\left(\sum_{i}\left(y_{i}-\bar{y}\right)^{2}-\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}\right) / k\right] /\left[\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} /(n-k-1)\right]$ Compare this to a $F(k, n-k-1)$ dist' n.

The example

To test $\beta_{2}=\beta_{3}=0$

Analysis of Variance Table

Model 1: y ~ $x 1$
Model 2: $y \sim x 1+x 2+x 1: x 2$

	Res.Df	RSS	Df Sum of Sq	F	Pr $(>F)$	
1	22	0.00975				
2	20	0.00312	2	0.00663	21.22	$1.1 e-05$

