
Logistic Regression

Example

Dose No. survived No. dead

0.0 18 7

0.5 19 6

1.0 12 13

1.5 5 20

2.0 6 19

2.5 2 23

3.0 1 24



Binary vs. continuous outcomes

Continuous: ANOVA ←→ Regression

Binary: k × 2 table ←→ ?

Goals:

−→ Determine the relationship between dose and Pr(dead).

−→ Find the dose at which Pr(dead) = 1/2.

A plot of the data
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Linear regression

Model:

y=β0 + β1x1 + β2x2 + · · · + βkxk + ε, ε ∼ iid Normal(0,σ2)

This implies:

E(y | x1, . . . , xk)=β0 + β1xk + · · · + βkxk

−→ What is the interpretation of βi ?

Binary outcomes

Let pd = Pr(dead | dose d)

pd=β0 + β1d ?

0 ≤ pd ≤ 1 but −∞ ≤ β0 + β1d ≤ ∞

Odds of death: 0 ≤
pd

1 − pd

≤ ∞

Log odds of death: −∞ ≤ ln

(

pd

1 − pd

)

≤ ∞

−→ ln

(

p

1 − p

)

is also called logit(p) or the logistic function.



logit(p̂d) vs d
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Logistic regression

ln

(

pd

1 − pd

)

=β0 + β1d

Try least squares, regressing ln

(

p̂d

1 − p̂d

)

on the dose d?

Problems:

−→ What if p̂d = 0 or 1?

−→ SD(p̂d) is not constant with d.



Maximum likelihood

Assume that

◦ yd ∼ Binomial(nd, pd),

◦ yd independent,

◦ logit(pd) = ln(
pd

1−pd
) = β0 + β1d

Note: pd=
eβ0+β1d

1 + eβ0+β1d

Likelihood:

L(β0,β1 | y)=
∏

d

p
yd

d (1 − pd)
(nd−yd)

Logistic regression

Logistic regression is a special case of a generalized linear model.

Software output:

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -1.33 0.33 -4.06 <0.001

dose 1.44 0.23 6.29 <0.001



Fitted curve
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Interpretation of β’s

ln

(

pd

1 − pd

)

=β0 + β1d

β0 = log odds when dose = 0

Note: β0 = 0 −→ p0 = 1
2

β1 = change in log odds with unit increase in dose

Note: β1 = 0 −→ survival unrelated to dose.



LD50

LD50 = dose at which Pr(dead | dose) = 1
2
.

ln

(

1/2

1 − 1/2

)

= β0 + β1(LD50)

0 = β0 + β1(LD50)

LD50 = −β0/β1

L̂D50= − β̂0/β̂1

ŜE(L̂D50) ≈ |L̂D50|

√

√

√

√

(

ŜE(β̂0)

β̂0

)2

+

(

ŜE(β̂1)

β̂1

)2

− 2
cov(β̂0, β̂1)

β̂0 β̂1

LD50
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Another example

Tobacco budworm, Heliothis virescens

Batches of 20 male and 20 female worms were given a 3-day

dose of pyrethroid trans-cypermethrin

The no. dead or “knocked down” in each batch was noted.

Dose

Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20

Female 0 2 6 10 12 16

A plot of the data

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

dose

p
ro

p
o
rt

io
n
 d

e
a
d

Male
Female



Analysis

Assume no sex difference

logit(p) = β0 + β1×dose

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -1.57 0.23 -6.8 <0.001

dose 0.153 0.022 6.8 <0.001

Assume sexes completely different

logit(p) = β0 + β1×sex + β2×dose + β3×sex:dose

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -1.72 0.32 -5.3 <0.001

sexmale -0.21 0.51 -0.4 0.68

dose 0.116 0.024 4.9 <0.001

sexmale:dose 0.182 0.067 2.7 0.007

Analysis (continued)

Different slopes but common “intercept”

logit(p) = β0 + β1×dose + β2×sex:dose

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -1.80 0.25 -7.2 <0.001

dose 0.120 0.021 5.6 <0.001

dose:sexmale 0.161 0.044 3.7 <0.001



Fitted curves
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Plot using log2 dose
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Use log2 of the dose

Assume no sex difference

logit(p) = β0 + β1×log2(dose)

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -2.77 0.37 -7.6 <0.001

log2dose 1.01 0.12 8.1 <0.001

Assume sexes completely different

logit(p) = β0 + β1×sex + β2×log2(dose) + β3×sex:log2(dose)

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -2.99 0.55 -5.4 <0.001

sexmale 0.17 0.78 -0.2 0.82

log2dose 0.91 0.17 5.4 <0.001

sexmale:log2dose 0.35 0.27 1.3 0.19

Use log2 of the dose (continued)

Different slopes but common “intercept”

logit(p) = β0 + β1×log2(dose) + β2×sex:log2(dose)

> summary(glm.out)$coef

Est SE t-val P-val

(Intercept) -2.91 0.39 -7.5 <0.001

log2dose 0.88 0.13 6.9 <0.001

log2dose:sexmale 0.41 0.12 3.3 0.001



Fitted curves
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Fitted probabilities
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Fitted probabilities
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Fitted probabilities
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ROC curve
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AUC = 0.83

Propensity scores

Suppose that a researcher wishes to compare the long-term sur-

vival of patients who received coronary artery bypass surgery with

those who did not receive surgery. Patients selected for CABG

can be expected to differ from those that did not receive surgery in

terms of important prognostic characteristics including the sever-

ity of coronary artery disease or the presence of concurrent con-

ditions, such as diabetes. A simple comparison of the survival of

patients who either did or did not receive CABG will be biased by

these confounding variables. This “confounding by indication” is

almost invariably present in non-randomised studies of healthcare

interventions and is difficult to overcome.

Nicholas J, Gulliford MC (2008)



Propensity scores

Rosenbaum and Rubin (1983) proposed the use of propensity

scores as a method for allowing for confounding by indication.

Propensity may be defined as an individual’s probability of being

treated with the intervention of interest given the complete set of all

information about that individual. The propensity score provides a

single metric that summarises all the information from explanatory

variables such as disease severity and comorbity; it estimates the

probability of a subject receiving the intervention of interest given

his or her clinical status.

Nicholas J, Gulliford MC (2008)

Propensity scores

−→ The propensity score is the conditional probability of receiv-

ing a given exposure (treatment), given a vector of measured

covariates.

The propensity score is usually estimated via logistic regression.

Let T be the treatment and X1, . . . , Xk be the covariates recorded.

logit(p(T )) = β0 + β1 × X1 + · · · + βk × Xk.

The propensity score is the fitted probability of treatment, given

the covariates.

−→ The propensity score calculation does not use the outcome Y .

−→ We have to assume that treatment assignment and the potential outcomes are conditionally independent.



Example

Gum et al (2001)

Example

Gum et al (2001)



Log-linear models

Higher order contingency tables are frequently analysed using log-

linear models. The below is a tabulation of breast cancer data from

Morrison et al. Recorded were diagnostic center, nuclear grade,

and survival.

malignant malignant benign benign

died survived died survived

Boston 35 59 47 112

Glamorgan 42 77 26 76

log(f̂ijk) = µ + αi + βj + γk + αβij + αγik + βγjk + αβγijk

−→ We are mostly interested in the interactions!

Log-linear models

The saturated model:

variable p-value

(Intercept) 0.00

center 0.42

grade 0.18

survival 0.01

center × grade 0.02

center × survival 0.76

grade × survival 0.20

grade × center × survival 0.76



Log-linear models

A sub-model:

variable p-value

(Intercept) 0.00

center 0.08

grade 0.15

survival 0.00

center × grade 0.00

grade × survival 0.05

Survival Analysis



Survival analysis

Survival analysis: Study of durations between events

−→ Outcome:

Time until an event occurs, i.e. survival time or failure time.

Study start Study end
time

0 100 200 300 400

T = 310

T = 150

T = 240

Examples: Age at death, age at first disease diagnosis, waiting time to pregnancy,

duration between treatment and death, . . .

The censoring problem in survival analysis

−→ Censoring:

Incomplete observations of the survival time.

−→ Right censoring:

Some individuals may not be observed for the full time to failure, because of

loss to follow-up, drop out, termination of the study, . . .

Study start Study end
time

0 100 200 300 400

T > 400

T = 310

T > 150

T > 240



Basic goals of survival analysis

1. To estimate and interpret survival characteristics

−→ Kaplan-Meier plots

2. To compare survival in different groups

−→ Log-rank test

3. To assess the relationship of explanatory variables to survival

−→ Cox regression model

Survival function

Survival function: S(t) = P(T > t)

−→ S(t) describes the probability of surviving to time t, or what

fraction of subjects survive (on average) to time t.

Properties:

◦ S(t) is a smooth function in t.

◦ S(0) = 1 and S(∞) = 0.

◦ S(t) is a decreasing function in t.

◦ Describes cumulative survival characteristics.



Survival functions
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Kaplan-Meier estimate

The Kaplan-Meier or product-limit estimate Ŝ(t) is an estimate of

S(t) from a finite sample.

Suppose that there are observations on n individuals and assume

that there are k (k ≤ n) distinct times t1, . . . , tk at which deaths

occur. Let dj be the number of deaths at time tj. Define

Ŝ(t) =
∏

j: tj<t

nj − dj

nj

,

where nj is the number of individuals at risk (e.g., the individuals

alive and uncensored) at time tj.

−→ If there are no censored observations, this reduces to

Ŝ(t) = (number of observations ≥ t) / n.

Example
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Some facts about the Kaplan-Meier estimate

−→ The Kaplan-Meier method is non-parametric. The survival

curve is step-wise, not smooth. Any jumping point is a fail-

ure time point. The jump size is proportional to the number

of deaths at a failure time point. Note that having a small

sample means having big steps!

−→ If the largest observed study time tk corresponds to a death

time, then the estimated Kaplan-Meier survival curve is 0 be-

yond tk. If the largest observed study time is censored, then

the survival curve is not 0 beyond tk.

−→ Ŝ(t) is a decreasing function in t with Ŝ(0) = 1. Further Ŝ(t)

converges to S(t) as n→ ∞.

Comparison of two survival distributions

We test H0: S1(t) = S2(t) versus Ha: S1(t) += S2(t)

−→ The main idea behind the two-sample log-rank test: if sur-

vival is unrelated to group effect, then at each time point,

roughly the same proportion in each group will fail.

The test is based on χ2-types of statistics:

Q =
D

∑

i=1

(O1i − E1i)

where the summation is over the pooled failure time points among the 2 groups.

O1i and E1i are the observed number of death for group 1 at the i
th pooled failure

time. The log-rank test statistic under H0 is

logRT =
Q2

Var(Q)
∼ χ2

1



Example

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V

treat=6-MP 21 9 19.3 5.46 16.8

treat=control 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

Comparison of survival distributions

The log-rank test can be extended to k > 2 groups. Under H0 the

null distribution of the test statistic is

logRT ∼ χ2
k – 1

However, these test also have some shortcomings:

◦ The tests have a bad performance when the two survival func-
tions are overcrossing.

◦ The test can only be used for comparing groups defined by sin-
gle categorical covariates.

◦ They are not very useful to quantify the differences.



Hazard function

The hazard function is defined as

h(t) = – d
dt
log(S(t))

In other words, it is the slope of – log(S(t)). You can think of it as

the propensity for failure for an individual at each time point, e.g.

the instantaneous risk of failure.

Properties:

◦ Closely related to the incidence rate.

◦ Not a probability!

◦ May increase or decrease or both.

◦ Describes instantaneous survival characteristics.

Hazard functions
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Cox regression model

−→ Goal:

To assess the relationship of explanatory variables (e.g. sex,

age, treatment type, etc) to survival time.

−→ One idea (Sir David Cox):

Use a proportional hazards regression model, defined as

h(t|x) = h0(t)e
βx

Here, h0(t) is a baseline hazard function, and β is a regres-

sion coefficient.

Cox regression model

What does h(t|x) = h0(t)eβx mean?

For example, assume we a treatment group (x = 1) and a control
group (x = 0).

−→ In the control group, the hazard function is

h(t|x = 0) = h0(t)e
β×0 = h0(t)

−→ In the treatment group, the hazard function is

h(t|x = 1) = h0(t)e
β×1 = h0(t)e

β

−→ The relative risk for treatment versus control group is

RR =
h(t|x = 1)

h(t|x = 0)
= eβ



Cox regression model

−→ Interpretation of the parameters:

β > 0 RR > 1 and h(t|x = 1) > h(t|x = 0)

β = 0 RR = 1 and h(t|x = 1) = h(t|x = 0)

β < 0 RR < 1 and h(t|x = 1) < h(t|x = 0)

−→ Hypothesis of interest:

H0 : β = 0 (no treatment effect)

Ha : β += 0 (treatment influences survival)

Example

coef exp(coef) se(coef) z p

treatcontrol 1.57 4.82 0.412 3.81 0.00014

exp(coef) exp(-coef) lower .95 upper .95

treatcontrol 4.82 0.208 2.15 10.8
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Another example

• Survival times for 33 patients who died from acute myelogenous leukaemia.

• Also measured was the patient’s white blood cell count at the time of diagnosis.

• The patients were also factored into 2 groups according to the presence or

absence of a morphologic characteristic of white blood cells (identified by the

presence of Auer rods and/or significant granulation of the leukaemic cells in

the bone marrow at the time of diagnosis).

coef exp(coef) se(coef) z p

agpresent -1.069 0.343 0.429 -2.49 0.0130

log(wbc) 0.368 1.444 0.136 2.70 0.0069

exp(coef) exp(-coef) lower .95 upper .95

agpresent 0.343 2.913 0.148 0.796

log(wbc) 1.444 0.692 1.106 1.886

Classification and Regression Trees



Example 1
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Example 1
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|
Marker 1 < 0.065

Marker 2 < 10.54
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Example 2

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

Marker 1

M
a

rk
e

r 
2

    A  

    B  

    C  

Example 2

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

Marker 1

M
a

rk
e

r 
2

    A  

    B  

    C  



Example 2
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Example 2

|
Marker 1 < 2.45

Marker 2 < 1.75

Marker 1 < 4.95

A

50/0/0

B

0/47/1

C

0/2/4

C

0/1/45

Classification Tree

Suppose that we have a scalar outcome, Y , and a p-vector of explanatory vari-
ables, X . Assume Y ∈ K = {1, 2, . . . , k}

1 2 1

2 3

x1

x2 x3

x2

< 5 ≥ 5

> 3 ≤ 3 = 2 += 2

> 1 ≤ 1

A classification tree partitions the X-space and provides a predicted value, per-

haps arg maxs Pr(Y = s|X ∈ Ak) in each region.



Regression Tree

Again, suppose that we have a scalar outcome, Y , and a p-vector of explanatory
variables, X . Now assume Y ∈ R.

13 34 77

51 26

x1

x2 x3

x2

< 5 ≥ 5

> 3 ≤ 3 = 2 += 2

> 1 ≤ 1

A regression tree partitions the X-space into disjoint regions Ak and provides a

fitted value E(Y |X ∈ Ak) within each region.

Recursive Partitioning

INITIALIZE All cases in the root node.

REPEAT Find optimal allowed split.

Partition leaf according to split.

STOP Stop when pre-defined criterion is met.



The Predictor Space

Suppose that we have p explanatory variables X1, . . . , Xp and n observations.

Each of the Xi can be

a) a numeric variable:

−→ n − 1 possible splits.

b) an ordered factor:

−→ k − 1 possible splits.

b) an unordered factor:

−→ 2k−1 − 1 possible splits.

We pick the split that results in the greatest decrease in impurity (according to

some impurity measure).
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Example: Low Birth Weight Data

Problem: Predict a child’s birthweight from a list of variables.

The birth weight data were collected in 1986 at the Baystate Medical Center,

Springfield, MA. For 189 infants, the following variables are available:

• an indicator of birth weight less than 2500g (yes/no),
• the mother’s age in years,
• the mother’s weight in pounds at last menstrual period,
• the mother’s race (white/black/other),
• the smoking status during pregnancy (yes/no),
• the number of previous premature labours,
• the history of hypertension (yes,no),
• the presence of uterine irritability (yes/no),
• the number of physician visits during the first trimester,
• the birth weight (grams).

Reference: Hosmer, DW and Lemeshow, S (1989). Applied Logistic Regression, New York: Wiley.

Example: Low Birth Weight Data
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Example: Low Birth Weight Data
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Example: Low Birth Weight Data
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General Points

What’s nice:

• Decision trees are very “natural” constructs, in particular when the explanatory
variables are categorical (and even better, when they are binary).

• Trees are very easy to explain and interpret.

• The models are invariant under transformations in the predictor space.

• Multi-factor response is easily dealt with.

• The treatment of missing values is more satisfactory than for most other model
classes.

• The models go after interactions immediately, rather than as an afterthought.

• The tree growth is actually more efficient than I have described it.

• There are extensions for survival and longitudinal data, and there is an exten-
sion called treed models. There is even a Bayesian version of CART.



General Points

What’s not so nice:

• The tree-space is huge, so we may need a lot of data.

• We might not be able to find the “best” model at all.

• It can be hard to assess uncertainty in inference about trees.

• The results can be quite variable (the tree selection is not very stable).

• Actual additivity becomes a mess in a binary tree.

• Simple trees usually do not have a lot of predictive power.

• There is a selection bias for the splits.

Other supervised approaches

• Bagging

• Random forests

• Support vector machines

• Linear discriminant analysis

• . . .


