Chapter 1

Introduction-Generalized Linear Models

1.1 The Basic Components

- Generalized linear models provide a unifying methodology for many common statistical analyses useful in biostatistics including:
 - regression
 - analysis of variance
 - analysis of covariance
 - log linear models
 - logistic regression
 - analysis of rates
 - longitudinal data analysis
The first component of a generalized linear model is the probability or random component which states that we have realized values y_1, y_2, \ldots, y_n of random variables Y_1, Y_2, \ldots, Y_n assumed independent with the probability density function of Y_i given by

$$f_{Y_i}(y_i; \theta_i, \phi) = \exp \left\{ \frac{[y_i \theta_i - b(\theta_i)]}{a(\phi)} + c(y_i, \phi) \right\}$$

- It is easy to show that under weak conditions on f_{Y_i}:

$$\mu_i = E(Y_i) = b^{(1)}(\theta_i) \quad \text{where} \quad b^{(1)}(\theta_i) = \left. \frac{d b(\theta)}{d \theta} \right|_{\theta = \theta_i}$$

$$V_i = \text{var}(Y_i) = b^{(2)}(\theta_i)a(\phi) \quad \text{where} \quad b^{(2)}(\theta_i) = \left. \frac{d^2 b(\theta)}{d \theta^2} \right|_{\theta = \theta_i}$$

- Thus the mean depends only on θ_i, the canonical parameter. The variance depends on a function of the canonical parameter (called the variance function) and the dispersion or scale parameter ϕ.

- These distributional assumptions constitute the probability or random component of a generalized linear model.
\begin{itemize}
\item \textbf{example:} For the normal distribution we have
\[
(2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{(y_i - \mu_i)^2}{2\sigma^2} \right\} = \exp \left\{ -\frac{y_i^2}{2\sigma^2} + \frac{y_i\mu_i}{\sigma^2} \frac{\mu_i^2}{2\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2) \right\}
\]
\[
= \exp \left\{ \frac{y_i\mu_i - \mu_i^2}{2\sigma^2} - \frac{y_i^2}{2\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2) \right\}
\]

Thus:
\[
\theta_i = \mu_i
\]
\[
b(\theta_i) = \frac{\mu_i^2}{2}
\]
\[
= \frac{\theta_i^2}{2}
\]
\[
c(y_i, \phi) = -\frac{y_i^2}{2\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2)
\]
\[
a(\phi) = \sigma^2
\]
\end{itemize}

\begin{itemize}
\item As an example of the mean variance relationship we have for the normal distribution:
\[
b(\theta_i) = \frac{\theta_i^2}{2} \implies b^{(1)}(\theta_i) = \theta_i \quad \text{so that} \quad E(Y_i) = \theta_i = \mu_i
\]
\[
b^{(2)}(\theta_i) = 1 \quad \text{so that} \quad \text{var}(Y_i) = \sigma^2
\]
\end{itemize}
• The second component of a generalized linear model is the systematic component in which a linear predictor is specified as

\[\eta_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} \]

○ The \(\beta_j \) are unknown parameters and the \(x_{ij} \) are values of covariates.

○ In the case of the normal distribution, we obtain analysis of variance, analysis of covariance and multiple regression.

○ For the binomial we obtain logistic regression while for the Poisson we obtain log linear models for contingency tables and the analysis of rates.
1.1. THE BASIC COMPONENTS

- The third component of a generalized linear model consists of a link between the random and systematic components.
 - The link is a function relating η and μ and is given by
 \[\eta_i = g(\mu_i) \]
 - Since $\mu_i = b^{(1)}(\theta_i)$ the link function also relates η_i to θ_i. The link function is required to be monotonic and differentiable.
 - While there are many possible link functions the most important are the canonical links defined by
 \[\eta_i = \theta_i \]
 - In this case the link function is just the function $(b^{(1)})^{-1}$ since
 \[\eta_i = g(b^{(1)}(\theta_i)) = \theta_i \quad \text{implies} \quad g = (b^{(1)})^{-1} \]
 - The importance of the canonical links is that there are simple sufficient statistics for the β_j in this case.
 - Note that in some expositions the link is defined as $g(\eta_i) = \mu_i$.
 - **Example:** For the normal distribution we have $\theta_i = \eta_i$ which implies that
 \[\theta_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} \]
 Since $\mu_i = \theta_i$ we have
 \[\mu_i = E(Y_i) = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} \]
 which is the usual general linear model for multiple regression, analysis of variance and analysis of covariance.
Summary: In a generalized linear model we have y_1, y_2, \ldots, y_n which are observed values of independent random variables Y_1, Y_2, \ldots, Y_n

- The distribution of Y_i is

$$f_{Y_i}(y_i; \theta_i, \phi) = \exp \left\{ \frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i; \phi) \right\}$$

- The systematic model is specified by a linear predictor of the form

$$\eta_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}$$

- The link between η_i and $\mu_i = E(Y_i)$ is defined by

$$\eta_i = g(\mu_i)$$

The link is called a canonical link if $\theta_i = \eta_i$. In this case $g = (b^{(1)})^{-1}$.

CHAPTER 1. INTRODUCTION-GENERALIZED LINEAR MODELS