
Chapter 1

Introduction

1.1 Before you start

Statistics starts with a problem, continues with the collection of data, proceeds with the data analysis and
finishes with conclusions. It is a common mistake of inexperienced Statisticians to plunge into a complex
analysis without paying attention to what the objectives are or even whether the data are appropriate for the
proposed analysis. Look before you leap!

1.1.1 Formulation

The formulation of a problem is often more essential than its solution which may be merely a
matter of mathematical or experimental skill. Albert Einstein

To formulate the problem correctly, you must

1. Understand the physical background. Statisticians often work in collaboration with others and need
to understand something about the subject area. Regard this as an opportunity to learn something new
rather than a chore.

2. Understand the objective. Again, often you will be working with a collaborator who may not be clear
about what the objectives are. Beware of “fishing expeditions” - if you look hard enough, you’ll
almost always find something but that something may just be a coincidence.

3. Make sure you know what the client wants. Sometimes Statisticians perform an analysis far more
complicated than the client really needed. You may find that simple descriptive statistics are all that
are needed.

4. Put the problem into statistical terms. This is a challenging step and where irreparable errors are
sometimes made. Once the problem is translated into the language of Statistics, the solution is often
routine. Difficulties with this step explain why Artificial Intelligence techniques have yet to make
much impact in application to Statistics. Defining the problem is hard to program.

That a statistical method can read in and process the data is not enough. The results may be totally
meaningless.
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1.1.2 Data Collection

It’s important to understand how the data was collected.

� Are the data observational or experimental? Are the data a sample of convenience or were they
obtained via a designed sample survey. How the data were collected has a crucial impact on what
conclusions can be made.

� Is there non-response? The data you don’t see may be just as important as the data you do see.

� Are there missing values? This is a common problem that is troublesome and time consuming to deal
with.

� How are the data coded? In particular, how are the qualitative variables represented.

� What are the units of measurement? Sometimes data is collected or represented with far more digits
than are necessary. Consider rounding if this will help with the interpretation or storage costs.

� Beware of data entry errors. This problem is all too common — almost a certainty in any real dataset
of at least moderate size. Perform some data sanity checks.

1.1.3 Initial Data Analysis

This is a critical step that should always be performed. It looks simple but it is vital.

� Numerical summaries - means, sds, five-number summaries, correlations.

� Graphical summaries

– One variable - Boxplots, histograms etc.

– Two variables - scatterplots.

– Many variables - interactive graphics.

Look for outliers, data-entry errors and skewed or unusual distributions. Are the data distributed as you
expect?

Getting data into a form suitable for analysis by cleaning out mistakes and aberrations is often time
consuming. It often takes more time than the data analysis itself. In this course, all the data will be ready to
analyze but you should realize that in practice this is rarely the case.

Let’s look at an example. The National Institute of Diabetes and Digestive and Kidney Diseases
conducted a study on 768 adult female Pima Indians living near Phoenix. The following variables were
recorded: Number of times pregnant, Plasma glucose concentration a 2 hours in an oral glucose tolerance
test, Diastolic blood pressure (mm Hg), Triceps skin fold thickness (mm), 2-Hour serum insulin (mu U/ml),
Body mass index (weight in kg/(height in m2)), Diabetes pedigree function, Age (years) and a test whether
the patient shows signs of diabetes (coded 0 if negative, 1 if positive). The data may be obtained from UCI
Repository of machine learning databases at http://www.ics.uci.edu/˜mlearn/MLRepository.html.

Of course, before doing anything else, one should find out what the purpose of the study was and more
about how the data was collected. But let’s skip ahead to a look at the data:
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> library(faraway)
> data(pima)
> pima

pregnant glucose diastolic triceps insulin bmi diabetes age test
1 6 148 72 35 0 33.6 0.627 50 1
2 1 85 66 29 0 26.6 0.351 31 0
3 8 183 64 0 0 23.3 0.672 32 1
... much deleted ...
768 1 93 70 31 0 30.4 0.315 23 0

The library(faraway) makes the data used in this book available while data(pima) calls up
this particular dataset. Simply typing the name of the data frame, pima prints out the data. It’s too long to
show it all here. For a dataset of this size, one can just about visually skim over the data for anything out of
place but it is certainly easier to use more direct methods.

We start with some numerical summaries:

> summary(pima)
pregnant glucose diastolic triceps insulin

Min. : 0.00 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0
1st Qu.: 1.00 1st Qu.: 99 1st Qu.: 62.0 1st Qu.: 0.0 1st Qu.: 0.0
Median : 3.00 Median :117 Median : 72.0 Median :23.0 Median : 30.5
Mean : 3.85 Mean :121 Mean : 69.1 Mean :20.5 Mean : 79.8
3rd Qu.: 6.00 3rd Qu.:140 3rd Qu.: 80.0 3rd Qu.:32.0 3rd Qu.:127.2
Max. :17.00 Max. :199 Max. :122.0 Max. :99.0 Max. :846.0

bmi diabetes age test
Min. : 0.0 Min. :0.078 Min. :21.0 Min. :0.000
1st Qu.:27.3 1st Qu.:0.244 1st Qu.:24.0 1st Qu.:0.000
Median :32.0 Median :0.372 Median :29.0 Median :0.000
Mean :32.0 Mean :0.472 Mean :33.2 Mean :0.349
3rd Qu.:36.6 3rd Qu.:0.626 3rd Qu.:41.0 3rd Qu.:1.000
Max. :67.1 Max. :2.420 Max. :81.0 Max. :1.000

The summary() command is a quick way to get the usual univariate summary information. At this stage,
we are looking for anything unusual or unexpected perhaps indicating a data entry error. For this purpose, a
close look at the minimum and maximum values of each variable is worthwhile. Starting with pregnant,
we see a maximum value of 17. This is large but perhaps not impossible. However, we then see that the next
5 variables have minimum values of zero. No blood pressure is not good for the health — something must
be wrong. Let’s look at the sorted values:

> sort(pima$diastolic)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[19] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24
[37] 30 30 38 40 44 44 44 44 46 46 48 48 48 48 48 50 50 50

...etc...

We see that the first 36 values are zero. The description that comes with the data says nothing about it but
it seems likely that the zero has been used as a missing value code. For one reason or another, the researchers
did not obtain the blood pressures of 36 patients. In a real investigation, one would likely be able to question
the researchers about what really happened. Nevertheless, this does illustrate the kind of misunderstanding
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that can easily occur. A careless statistician might overlook these presumed missing values and complete an
analysis assuming that these were real observed zeroes. If the error was later discovered, they might then
blame the researchers for using 0 as a missing value code (not a good choice since it is a valid value for
some of the variables) and not mentioning it in their data description. Unfortunately such oversights are
not uncommon particularly with datasets of any size or complexity. The statistician bears some share of
responsibility for spotting these mistakes.

We set all zero values of the five variables to NA which is the missing value code used by R .

> pima$diastolic[pima$diastolic == 0] <- NA
> pima$glucose[pima$glucose == 0] <- NA
> pima$triceps[pima$triceps == 0] <- NA
> pima$insulin[pima$insulin == 0] <- NA
> pima$bmi[pima$bmi == 0] <- NA

The variable test is not quantitative but categorical. Such variables are also called factors. However,
because of the numerical coding, this variable has been treated as if it were quantitative. It’s best to designate
such variables as factors so that they are treated appropriately. Sometimes people forget this and compute
stupid statistics such as “average zip code”.

> pima$test <- factor(pima$test)
> summary(pima$test)
0 1

500 268

We now see that 500 cases were negative and 268 positive. Even better is to use descriptive labels:

> levels(pima$test) <- c("negative","positive")
> summary(pima)

pregnant glucose diastolic triceps insulin
Min. : 0.00 Min. : 44 Min. : 24.0 Min. : 7.0 Min. : 14.0
1st Qu.: 1.00 1st Qu.: 99 1st Qu.: 64.0 1st Qu.: 22.0 1st Qu.: 76.2
Median : 3.00 Median :117 Median : 72.0 Median : 29.0 Median :125.0
Mean : 3.85 Mean :122 Mean : 72.4 Mean : 29.2 Mean :155.5
3rd Qu.: 6.00 3rd Qu.:141 3rd Qu.: 80.0 3rd Qu.: 36.0 3rd Qu.:190.0
Max. :17.00 Max. :199 Max. :122.0 Max. : 99.0 Max. :846.0

NA’s : 5 NA’s : 35.0 NA’s :227.0 NA’s :374.0
bmi diabetes age test

Min. :18.2 Min. :0.078 Min. :21.0 negative:500
1st Qu.:27.5 1st Qu.:0.244 1st Qu.:24.0 positive:268
Median :32.3 Median :0.372 Median :29.0
Mean :32.5 Mean :0.472 Mean :33.2
3rd Qu.:36.6 3rd Qu.:0.626 3rd Qu.:41.0
Max. :67.1 Max. :2.420 Max. :81.0
NA’s :11.0

Now that we’ve cleared up the missing values and coded the data appropriately we are ready to do some
plots. Perhaps the most well-known univariate plot is the histogram:

hist(pima$diastolic)
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Figure 1.1: First panel shows histogram of the diastolic blood pressures, the second shows a kernel density
estimate of the same while the the third shows an index plot of the sorted values

as shown in the first panel of Figure 1.1. We see a bell-shaped distribution for the diastolic blood pressures
centered around 70. The construction of a histogram requires the specification of the number of bins and
their spacing on the horizontal axis. Some choices can lead to histograms that obscure some features of the
data. R attempts to specify the number and spacing of bins given the size and distribution of the data but
this choice is not foolproof and misleading histograms are possible. For this reason, I prefer to use Kernel
Density Estimates which are essentially a smoothed version of the histogram (see Simonoff (1996) for a
discussion of the relative merits of histograms and kernel estimates).

> plot(density(pima$diastolic,na.rm=TRUE))

The kernel estimate may be seen in the second panel of Figure 1.1. We see that it avoids the distracting
blockiness of the histogram. An alternative is to simply plot the sorted data against its index:

plot(sort(pima$diastolic),pch=".")

The advantage of this is we can see all the data points themselves. We can see the distribution and
possible outliers. We can also see the discreteness in the measurement of blood pressure - values are rounded
to the nearest even number and hence we the “steps” in the plot.

Now a couple of bivariate plots as seen in Figure 1.2:

> plot(diabetes ˜ diastolic,pima)
> plot(diabetes ˜ test,pima)

hist(pima$diastolic)

First, we see the standard scatterplot showing two quantitative variables. Second, we see a side-by-side
boxplot suitable for showing a quantitative and a qualititative variable. Also useful is a scatterplot matrix,
not shown here, produced by
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Figure 1.2: First panel shows scatterplot of the diastolic blood pressures against diabetes function and the
second shows boxplots of diastolic blood pressure broken down by test result

> pairs(pima)

We will be seeing more advanced plots later but the numerical and graphical summaries presented here are
sufficient for a first look at the data.

1.2 When to use Regression Analysis

Regression analysis is used for explaining or modeling the relationship between a single variable Y , called
the response, output or dependent variable, and one or more predictor, input, independent or explanatory
variables, X1 ��������� Xp. When p � 1, it is called simple regression but when p � 1 it is called multiple re-
gression or sometimes multivariate regression. When there is more than one Y , then it is called multivariate
multiple regression which we won’t be covering here.

The response must be a continuous variable but the explanatory variables can be continuous, discrete
or categorical although we leave the handling of categorical explanatory variables to later in the course.
Taking the example presented above, a regression of diastolic and bmi on diabetes would be a
multiple regression involving only quantitative variables which we shall be tackling shortly. A regression of
diastolic and bmi on test would involve one predictor which is quantitative which we will consider
in later in the chapter on Analysis of Covariance. A regression of diastolic on just test would involve
just qualitative predictors, a topic called Analysis of Variance or ANOVA although this would just be a simple
two sample situation. A regression of test (the response) on diastolic and bmi (the predictors) would
involve a qualitative response. A logistic regression could be used but this will not be covered in this book.

Regression analyses have several possible objectives including

1. Prediction of future observations.

2. Assessment of the effect of, or relationship between, explanatory variables on the response.

3. A general description of data structure.
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Extensions exist to handle multivariate responses, binary responses (logistic regression analysis) and
count responses (poisson regression).

1.3 History

Regression-type problems were first considered in the 18th century concerning navigation using astronomy.
Legendre developed the method of least squares in 1805. Gauss claimed to have developed the method a
few years earlier and showed that the least squares was the optimal solution when the errors are normally
distributed in 1809. The methodology was used almost exclusively in the physical sciences until later in the
19th century. Francis Galton coined the term regression to mediocrity in 1875 in reference to the simple
regression equation in the form

y � ȳ
SDy

� r
	
x � x̄ 

SDx �

Galton used this equation to explain the phenomenon that sons of tall fathers tend to be tall but not as tall as
their fathers while sons of short fathers tend to be short but not as short as their fathers. This effect is called
the regression effect.

We can illustrate this effect with some data on scores from a course taught using this book. In Figure 1.3,
we see a plot of midterm against final scores. We scale each variable to have mean 0 and SD 1 so that we are
not distracted by the relative difficulty of each exam and the total number of points possible. Furthermore,
this simplifies the regression equation to

y � rx

> data(stat500)
> stat500 <- data.frame(scale(stat500))
> plot(final ˜ midterm,stat500)
> abline(0,1)
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Figure 1.3: Final and midterm scores in standard units. Least squares fit is shown with a dotted line while
y � x is shown as a solid line
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We have added the y � x (solid) line to the plot. Now a student scoring, say one standard deviation
above average on the midterm might reasonably expect to do equally well on the final. We compute the
least squares regression fit and plot the regression line (more on the details later). We also compute the
correlations.

> g <- lm(final ˜ midterm,stat500)
> abline(g$coef,lty=5)
> cor(stat500)

midterm final hw total
midterm 1.00000 0.545228 0.272058 0.84446
final 0.54523 1.000000 0.087338 0.77886
hw 0.27206 0.087338 1.000000 0.56443
total 0.84446 0.778863 0.564429 1.00000

We see that the the student scoring 1 SD above average on the midterm is predicted to score somewhat
less above average on the final (see the dotted regression line) - 0.54523 SD’s above average to be exact.
Correspondingly, a student scoring below average on the midterm might expect to do relatively better in the
final although still below average.

If exams managed to measure the ability of students perfectly, then provided that ability remained un-
changed from midterm to final, we would expect to see a perfect correlation. Of course, it’s too much to
expect such a perfect exam and some variation is inevitably present. Furthermore, individual effort is not
constant. Getting a high score on the midterm can partly be attributed to skill but also a certain amount of
luck. One cannot rely on this luck to be maintained in the final. Hence we see the “regression to mediocrity”.

Of course this applies to any  x � y � situation like this — an example is the so-called sophomore jinx
in sports when a rookie star has a so-so second season after a great first year. Although in the father-son
example, it does predict that successive descendants will come closer to the mean, it does not imply the
same of the population in general since random fluctuations will maintain the variation. In many other
applications of regression, the regression effect is not of interest so it is unfortunate that we are now stuck
with this rather misleading name.

Regression methodology developed rapidly with the advent of high-speed computing. Just fitting a
regression model used to require extensive hand calculation. As computing hardware has improved, then
the scope for analysis has widened.


