
Chapter 2

Estimation

2.1 Example

Let’s start with an example. Suppose that Y is the fuel consumption of a particular model of car in m.p.g.
Suppose that the predictors are

1. X1 — the weight of the car

2. X2 — the horse power

3. X3 — the no. of cylinders.

X3 is discrete but that’s OK. Using country of origin, say, as a predictor would not be possible within the
current development (we will see how to do this later in the course). Typically the data will be available in
the form of an array like this

y1 x11 x12 x13
y2 x21 x22 x23����� �����
yn xn1 xn2 xn3

where n is the number of observations or cases in the dataset.

2.2 Linear Model

One very general form for the model would be

Y � f
�
X1 � X2 � X3 ��� ε

where f is some unknown function and ε is the error in this representation which is additive in this instance.
Since we usually don’t have enough data to try to estimate f directly, we usually have to assume that it has
some more restricted form, perhaps linear as in

Y � β0 � β1X1 � β2X2 � β3X3 � ε

where βi, i � 0 � 1 � 2 � 3 are unknown parameters. β0 is called the intercept term. Thus the problem is reduced
to the estimation of four values rather than the complicated infinite dimensional f .

In a linear model the parameters enter linearly — the predictors do not have to be linear. For example

Y � β0 � β1X1 � β2 logX2 � ε
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is linear but
Y � β0 	 β1Xβ2

1 	 ε

is not. Some relationships can be transformed to linearity — for example y � β0xβ
1ε can be linearized by

taking logs. Linear models seem rather restrictive but because the predictors can transformed and combined
in any way, they are actually very flexible. Truly non-linear models are rarely absolutely necessary and most
often arise from a theory about the relationships between the variables rather than an empirical investigation.

2.3 Matrix Representation

Given the actual data, we may write

yi � β0 	 β1x1i 	 β2x2i 	 β3x3i 	 εi i � 1 
�������
 n
but the use of subscripts becomes inconvenient and conceptually obscure. We will find it simpler both
notationally and theoretically to use a matrix/vector representation. The regression equation is written as

y � Xβ 	 ε

where y �� y1 ����� yn � T , ε �� ε1 ����� εn � T , β �� β0 ����� β3 � T and

X � ���� 1 x11 x12 x13
1 x21 x22 x23����� �����
1 xn1 xn2 xn3

�����
The column of ones incorporates the intercept term. A couple of examples of using this notation are the
simple no predictor, mean only model y � µ 	 ε�� y1�����

yn

�� � �� 1�����
1

�� µ 	 �� ε1�����
εn

��
We can assume that Eε � 0 since if this were not so, we could simply absorb the non-zero expectation for
the error into the mean µ to get a zero expectation. For the two sample problem with a treatment group
having the response y1 
�������
 ym with mean µy and control group having response z1 
�������
 zn with mean µz we
have ��������

y1�����
ym
z1�����
zn

��������� �
��������

1 0�����
1 0
0 1� �
0 1

��������� �
µy
µz � 	

������
ε1���������������

εm � n

�������
2.4 Estimating β

We have the regression equation y � Xβ 	 ε - what estimate of β would best separate the systematic com-
ponent Xβ from the random component ε. Geometrically speaking, y � IRn while β � IRp where p is the
number of parameters (if we include the intercept then p is the number of predictors plus one).
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Space spanned by X Fitted in p dimensions

y in n dimensions Residual in
n−p dimensions

Figure 2.1: Geometric representation of the estimation β. The data vector Y is projected orthogonally onto
the model space spanned by X . The fit is represented by projection ŷ � X β̂ with the difference between the
fit and the data represented by the residual vector ε̂.

The problem is to find β such that Xβ is close to Y . The best choice of β̂ is apparent in the geometrical
representation shown in Figure 2.4.

β̂ is in some sense the best estimate of β within the model space. The response predicted by the model
is ŷ � X β̂ or Hy where H is an orthogonal projection matrix. The difference between the actual response
and the predicted response is denoted by ε̂ — the residuals.

The conceptual purpose of the model is to represent, as accurately as possible, something complex — y
which is n-dimensional — in terms of something much simpler — the model which is p-dimensional. Thus
if our model is successful, the structure in the data should be captured in those p dimensions, leaving just
random variation in the residuals which lie in an n � p dimensional space. We have

Data � Systematic Structure � Random Variation

n dimensions � p dimensions �! n � p " dimensions

2.5 Least squares estimation

The estimation of β can be considered from a non-geometric point of view. We might define the best estimate
of β as that which minimizes the sum of the squared errors, εT ε. That is to say that the least squares estimate
of β, called β̂ minimizes

∑ε2
i � εT ε �# y � Xβ " T  y � Xβ "

Expanding this out, we get
yT y � 2βXT y � βT XT Xβ

Differentiating with respect to β and setting to zero, we find that β̂ satisfies

XT X β̂ � XT y

These are called the normal equations. We can derive the same result using the geometric approach. Now
provided XT X is invertible

β̂ �  XT X "�$ 1XT y

X β̂ � X  XT X " $ 1XT y� Hy
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H % X & XT X '�( 1XT is called the “hat-matrix” and is the orthogonal projection of y onto the space spanned
by X . H is useful for theoretical manipulations but you usually don’t want to compute it explicitly as it is an
n ) n matrix.* Predicted values: ŷ % Hy % X β̂.* Residuals: ε̂ % y + X β̂ % y + ŷ %�& I + H ' y* Residual sum of squares: ε̂T ε̂ % yT & I + H ',& I + H ' y % yT & I + H ' y

Later we will show that the least squares estimate is the best possible estimate of β when the errors ε are
uncorrelated and have equal variance - i.e. var ε % σ2I.

2.6 Examples of calculating β̂

1. When y % µ - ε, X % 1 and β % µ so X T X % 1T 1 % n so

β̂ %�& XT X ' ( 1XT y % 1
n

1T y % ȳ

2. Simple linear regression (one predictor)

yi % α - βxi - εi./
y10�0�0
yn

12 % ./
1 x10�0�0
1 xn

1243
α
β 5 - ./

ε10�0�0
εn

12
We can now apply the formula but a simpler approach is to rewrite the equation as

yi % α 67 8,9 :
α - βx̄ - β & xi + x̄ ';- εi

so now

X % ./
1 x1 + x̄0�0�0
1 xn + x̄

12
XT X % 3

n 0
0 ∑n

i < 1 & xi + x̄ ' 2 5
Now work through the rest of the calculation to reconstruct the familiar estimates, i.e.

β̂ % ∑ & xi + x̄ ' yi

∑ & xi + x̄ ' 2
In higher dimensions, it is usually not possible to find such explicit formulae for the parameter estimates

unless XT X happens to be a simple form.

2.7 Why is β̂ a good estimate?

1. It results from an orthogonal projection onto the model space. It makes sense geometrically.

2. If the errors are independent and identically normally distributed, it is the maximum likelihood esti-
mator. Loosely put, the maximum likelihood estimate is the value of β that maximizes the probability
of the data that was observed.

3. The Gauss-Markov theorem states that it is best linear unbiased estimate. (BLUE).
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2.8 Gauss-Markov Theorem

First we need to understand the concept of an estimable function. A linear combination of the parameters
ψ = cT β is estimable if and only if there exists a linear combination aT y such that

EaT y = cT β > β

Estimable functions include predictions of future observations which explains why they are worth consid-
ering. If X is of full rank (which it usually is for observational data), then all linear combinations are
estimable.

Gauss-Markov theorem
Suppose Eε = 0 and var ε = σ2I. Suppose also that the structural part of the model, EY = Xβ is correct.

Let ψ = cT β be an estimable function, then in the class of all unbiased linear estimates of ψ, ψ̂ = cT β̂ has
the minimum variance and is unique.

Proof:
We start with a preliminary calculation:
Suppose aT y is some unbiased estimate of cT β so that

EaT y = cT β > β
aT Xβ = cT β > β

which means that aT X = cT . This implies that c must be in the range space of X T which in turn implies that
c is also in the range space of X T X which means there exists a λ such that

c = XT Xλ
cT β̂ = λT XT X β̂ = λT XT y

Now we can show that the least squares estimator has the minimum variance — pick an arbitrary es-
timable function aT y and compute its variance:

var ? aT y @A= var ? aT y B cT β̂ C cT β̂ @= var ? aT y B λT XT y C cT β̂ @= var ? aT y B λT XT y @;C var ? cT β̂ @;C 2cov ? aT y B λT XT y D λT XT y @
but

cov ? aT y B λT XT y D λT XT y @A= ? aT B λT XT @ σ2IXλ= ? aT X B λXT X @ σ2Iλ= ? cT B cT @ σ2Iλ = 0

so
var ? aT y @E= var ? aT y B λT XT y @;C var ? cT β̂ @

Now since variances cannot be negative, we see that

var ? aT y @GF var ? cT β̂ @
In other words cT β̂ has minimum variance. It now remains to show that it is unique. There will be equality
in above relation if var ? aT y B λT XT y @H= 0 which would require that aT B λT XT = 0 which means that
aT y = λT XT y = cT β̂ so equality occurs only if aT y = cT β̂ so the estimator is unique.
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Implications
The Gauss-Markov theorem shows that the least squares estimate β̂ is a good choice, but if the errors

are correlated or have unequal variance, there will be better estimators. Even if the errors behave but are
non-normal then non-linear or biased estimates may work better in some sense. So this theorem does not
tell one to use least squares all the time, it just strongly suggests it unless there is some strong reason to do
otherwise.

Situations where estimators other than ordinary least squares should be considered are

1. When the errors are correlated or have unequal variance, generalized least squares should be used.

2. When the error distribution is long-tailed, then robust estimates might be used. Robust estimates are
typically not linear in y.

3. When the predictors are highly correlated (collinear), then biased estimators such as ridge regression
might be preferable.

2.9 Mean and Variance of β̂

Now β̂ I�J XT X K�L 1XT y soM Mean Eβ̂ I�J XT X K L 1XT Xβ I β (unbiased)M var β̂ I�J XT X K�L 1XT σ2IX J XT X K�L 1 I�J XT X K�L 1σ2

Note that since β̂ is a vector, J X T X K L 1σ2 is a variance-covariance matrix. Sometimes you want the

standard error for a particular component which can be picked out as in se J β̂i KNI�O J XT X K L 1
ii σ̂.

2.10 Estimating σ2

Recall that the residual sum of squares was ε̂T ε̂ I yT J I P H K y. Now after some calculation, one can show
that E ε̂T ε̂ I σ2 J n P p K which shows that

σ̂2 I ε̂T ε̂
n P p

is an unbiased estimate of σ2. n P p is the degrees of freedom of the model. Actually a theorem parallel to
the Gauss-Markov theorem shows that it has the minimum variance among all quadratic unbiased estimators
of σ2.

2.11 Goodness of Fit

How well does the model fit the data? One measure is R2, the so-called coefficient of determination or
percentage of variance explained

R2 I 1 P ∑ J ŷi P yi K 2
∑ J yi P ȳ K 2 I 1 P RSS

Total SS J corrected for mean K
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Figure 2.2: Variation in the response y when x is known is denoted by dotted arrows while variation in y
when x is unknown is shown with the solid arrows

The range is 0 Q R2 Q 1 - values closer to 1 indicating better fits. For simple linear regression R2 R r2 where
r is the correlation between x and y. An equivalent definition is

R2 R ∑ S ŷi T ȳ U 2
∑ S yi T ȳ U 2

The graphical intuition behind R2 is shown in Figure 2.2. Suppose you want to predict y. If you don’t
know x, then your best prediction is ȳ but the variability in this prediction is high. If you do know x, then
your prediction will be given by the regression fit. This prediction will be less variable provided there is
some relationship between x and y. R2 is one minus the ratio of the sum of squares for these two predictions.
Thus for perfect predictions the ratio will be zero and R2 will be one.

Warning: R2 as defined here doesn’t make any sense if you do not have an intercept in your model. This
is because the denominator in the definition of R2 has a null model with an intercept in mind when the sum
of squares is calculated. Alternative definitions of R2 are possible when there is no intercept but the same
graphical intuition is not available and the R2’s obtained should not be compared to those for models with
an intercept. Beware of high R2’s reported from models without an intercept.

What is a good value of R2? It depends on the area of application. In the biological and social sciences,
variables tend to be more weakly correlated and there is a lot of noise. We’d expect lower values for R2

in these areas — a value of 0.6 might be considered good. In physics and engineering, where most data
comes from closely controlled experiments, we expect to get much higher R2’s and a value of 0.6 would
be considered low. Of course, I generalize excessively here so some experience with the particular area is
necessary for you to judge your R2’s well.

An alternative measure of fit is σ̂. This quantity is directly related to the standard errors of estimates
of β and predictions. The advantage is that σ̂ is measured in the units of the response and so may be
directly interpreted in the context of the particular dataset. This may also be a disadvantage in that one
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must understand whether the practical significance of this measure whereas R2, being unitless, is easy to
understand.

2.12 Example

Now let’s look at an example concerning the number of species of tortoise on the various Galapagos Islands.
There are 30 cases (Islands) and 7 variables in the dataset. We start by reading the data into R and examining
it

> data(gala)
> gala

Species Endemics Area Elevation Nearest Scruz Adjacent
Baltra 58 23 25.09 346 0.6 0.6 1.84

Bartolome 31 21 1.24 109 0.6 26.3 572.33

--- cases deleted ---

Tortuga 16 8 1.24 186 6.8 50.9 17.95
Wolf 21 12 2.85 253 34.1 254.7 2.33

The variables are

Species The number of species of tortoise found on the island

Endemics The number of endemic species

Elevation The highest elevation of the island (m)

Nearest The distance from the nearest island (km)

Scruz The distance from Santa Cruz island (km)

Adjacent The area of the adjacent island (km2)

The data were presented by Johnson and Raven (1973) and also appear in Weisberg (1985). I have filled
in some missing values for simplicity (see Chapter 14 for how this can be done). Fitting a linear model in R
is done using the lm() command. Notice the syntax for specifying the predictors in the model. This is the
so-called Wilkinson-Rogers notation. In this case, since all the variables are in the gala data frame, we must
use the data= argument:

> gfit <- lm(Species ˜ Area + Elevation + Nearest + Scruz + Adjacent,
data=gala)

> summary(gfit)
Call:
lm(formula = Species ˜ Area + Elevation + Nearest + Scruz + Adjacent,

data = gala)

Residuals:
Min 1Q Median 3Q Max

-111.68 -34.90 -7.86 33.46 182.58
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822 19.15420 0.37 0.7154
Area -0.02394 0.02242 -1.07 0.2963
Elevation 0.31946 0.05366 5.95 3.8e-06
Nearest 0.00914 1.05414 0.01 0.9932
Scruz -0.24052 0.21540 -1.12 0.2752
Adjacent -0.07480 0.01770 -4.23 0.0003

Residual standard error: 61 on 24 degrees of freedom
Multiple R-Squared: 0.766, Adjusted R-squared: 0.717
F-statistic: 15.7 on 5 and 24 degrees of freedom, p-value: 6.84e-07

We can identify several useful quantities in this output. Other statistical packages tend to produce output
quite similar to this. One useful feature of R is that it is possible to directly calculate quantities of interest.
Of course, it is not necessary here because the lm() function does the job but it is very useful when the
statistic you want is not part of the pre-packaged functions.

First we make the X-matrix

> x <- cbind(1,gala[,-c(1,2)])

and here’s the response y:

> y <- gala$Species

Now let’s construct X T X : t() does transpose and %*% does matrix multiplication:

> t(x) %*% x
Error: %*% requires numeric matrix/vector arguments

Gives a somewhat cryptic error. The problem is that matrix arithmetic can only be done with numeric
values but x here derives from the data frame type. Data frames are allowed to contain character variables
which would disallow matrix arithmetic. We need to force x into the matrix form:

> x <- as.matrix(x)
> t(x) %*% x

Inverses can be taken using the solve() command:

> xtxi <- solve(t(x) %*% x)
> xtxi

A somewhat more direct way to get V X T X W�X 1 is as follows:

> gfit <- lm(Species ˜ Area + Elevation + Nearest + Scruz + Adjacent,
data=gala)

> gs <- summary(gfit)
> gs$cov.unscaled



2.12. EXAMPLE 25

The names() command is the way to see the components of an Splus object - you can see that there
are other useful quantities that are directly available:

> names(gs)
> names(gfit)

In particular, the fitted (or predicted) values and residuals are

> gfit$fit
> gfit$res

We can get β̂ directly:

> xtxi %*% t(x) %*% y
[,1]

[1,] 7.068221
[2,] -0.023938
[3,] 0.319465
[4,] 0.009144
[5,] -0.240524
[6,] -0.074805

or in a computationally efficient and stable manner:

> solve(t(x) %*% x, t(x) %*% y)
[,1]

[1,] 7.068221
[2,] -0.023938
[3,] 0.319465
[4,] 0.009144
[5,] -0.240524
[6,] -0.074805

We can estimate σ using the estimator in the text:

> sqrt(sum(gfit$resˆ2)/(30-6))
[1] 60.975

Compare this to the results above.
We may also obtain the standard errors for the coefficients. Also diag() returns the diagonal of a

matrix):

> sqrt(diag(xtxi))*60.975
[1] 19.154139 0.022422 0.053663 1.054133 0.215402 0.017700

Finally we may compute R2:

> 1-sum(gfit$resˆ2)/sum((y-mean(y))ˆ2)
[1] 0.76585


