
Chapter 3

Inference

Up till now, we haven’t found it necessary to assume any distributional form for the errors ε. However, if we
want to make any confidence intervals or perform any hypothesis tests, we will need to do this. The usual
assumption is that the errors are normally distributed and in practice this is often, although not always, a
reasonable assumption. We’ll assume that the errors are independent and identically normally distributed
with mean 0 and variance σ2, i.e.

ε � N
�
0 � σ2I �

We can handle non-identity variance matrices provided we know the form — see the section on gener-
alized least squares later. Now since y � Xβ � ε,

y � N
�
Xβ � σ2I �

is a compact description of the regression model and from this we find that (using the fact that linear com-
binations of normally distributed values are also normal)

β̂ � �
XT X ��� 1XT y � N

�
β � � XT X ��� 1σ2 �

3.1 Hypothesis tests to compare models

Given several predictors for a response, we might wonder whether all are needed. Consider a large model,
Ω, and a smaller model, ω, which consists of a subset of the predictors that are in Ω. By the principle of
Occam’s Razor (also known as the law of parsimony), we’d prefer to use ω if the data will support it. So
we’ll take ω to represent the null hypothesis and Ω to represent the alternative. A geometric view of the
problem may be seen in Figure 3.1.

If RSSω 	 RSSΩ is small, then ω is an adequate model relative to Ω. This suggests that something like

RSSω 	 RSSΩ

RSSΩ

would be a potentially good test statistic where the denominator is used for scaling purposes.
As it happens the same test statistic arises from the likelihood-ratio testing approach. We give an outline

of the development: If L
�
β � σ 
 y � is likelihood function, then the likelihood ratio statistic is

maxβ � σ � Ω L
�
β � σ 
 y �

maxβ � σ � ω L
�
β � σ 
 y �
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Figure 3.1: Geometric view of the comparison between big model, Ω, and small model, ω. The squared
length of the residual vector for the big model is RSSΩ while that for the small model is RSSω. By Pythago-
ras’ theorem, the squared length of the vector connecting the two fits is RSSω  RSSΩ. A small value for this
indicates that the small model fits almost as well as the large model and thus might be preferred due to its
simplicity.

The test should reject if this ratio is too large. Working through the details, we find that

L � β̂ � σ̂ � y � ∝ σ̂ � n

which gives us a test that rejects if
σ̂2

ω
σ̂2

Ω

� a constant

which is equivalent to
RSSω

RSSΩ

� a constant

(constants are not the same) or
RSSω

RSSΩ
 1 � a constant  1

which is
RSSω  RSSΩ

RSSΩ

� a constant

which is the same statistics suggested by the geometric view. It remains for us to discover the null distribu-
tion of this statistic.

Now suppose that the dimension (no. of parameters) of Ω is q and dimension of ω is p. Now by
Cochran’s theorem, if the null (ω) is true then

RSSω  RSSΩ

q  p � σ2χ2
q � p

RSSΩ

n  q � σ2χ2
n � q

and these two quantities are independent. So we find that

F � � RSSω  RSSΩ ����� q  p �
RSSΩ ��� n  q � � Fq � p � n � q
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Thus we would reject the null hypothesis if F � F � α �q � p � n � q The degrees of freedom of a model is (usually) the
number of observations minus the number of parameters so this test statistic can be written

F � �
RSSω  RSSΩ !�" � d fω  d fΩ !

RSSΩ " d fΩ

where d fΩ � n  q and d fω � n  p. The same test statistic applies not just when ω is a subset of Ω but
also to a subspace. This test is very widely used in regression and analysis of variance. When it is applied
in different situations, the form of test statistic may be re-expressed in various different ways. The beauty
of this approach is you only need to know the general form. In any particular case, you just need to figure
out which models represents the null and alternative hypotheses, fit them and compute the test statistic. It is
very versatile.

3.2 Some Examples

3.2.1 Test of all predictors

Are any of the predictors useful in predicting the response?# Full model (Ω) : y � Xβ $ ε where X is a full-rank n % p matrix.# Reduced model (ω) : y � µ $ ε — predict y by the mean.

We could write the null hypothesis in this case as

H0 : β1 �'&�&�& βp � 1 � 0

Now# RSSΩ � �
y  X β̂ ! T � y  X β̂ ! � ε̂T ε̂ � RSS# RSSω � �
y  ȳ ! T � y  ȳ ! � SYY, which is sometimes known as the sum of squares corrected for the

mean.

So in this case

F � �
SYY  RSS !�" � p  1 !

RSS " � n  p !
We’d now refer to Fp � 1 � n � p for a critical value or a p-value. Large values of F would indicate rejection
of the null. Traditionally, the information in the above test is presented in an analysis of variance table.
Most computer packages produce a variant on this. See Table 3.1. It is not really necessary to specifically
compute all the elements of the table. As the originator of the table, Fisher said in 1931, it is “nothing but a
convenient way of arranging the arithmetic”. Since he had to do his calculations by hand, the table served
some purpose but it is less useful now.

A failure to reject the null hypothesis is not the end of the game — you must still investigate the pos-
sibility of non-linear transformations of the variables and of outliers which may obscure the relationship.
Even then, you may just have insufficient data to demonstrate a real effect which is why we must be care-
ful to say “fail to reject” the null rather than “accept” the null. It would be a mistake to conclude that no
real relationship exists. This issue arises when a pharmaceutical company wishes to show that a proposed
generic replacement for a brand-named drug is equivalent. It would not be enough in this instance just to
fail to reject the null. A higher standard would be required.
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Source Deg. of Freedom Sum of Squares Mean Square F
Regression p ( 1 SSreg SSreg )�* p ( 1 + F
Residual n-p RSS RSS )�* n ( p +
Total n-1 SYY

Table 3.1: Analysis of Variance table

When the null is rejected, this does not imply that the alternative model is the best model. We don’t
know whether all the predictors are required to predict the response or just some of them. Other predictors
might also be added — for example quadratic terms in the existing predictors. Either way, the overall F-test
is just the beginning of an analysis and not the end.

Let’s illustrate this test and others using an old economic dataset on 50 different countries. These data
are averages over 1960-1970 (to remove business cycle or other short-term fluctuations). dpi is per-capita
disposable income in U.S. dollars; ddpi is the percent rate of change in per capita disposable income; sr
is aggregate personal saving divided by disposable income. The percentage population under 15 (pop15)
and over 75 (pop75) are also recorded. The data come from Belsley, Kuh, and Welsch (1980). Take a look
at the data:

> data(savings)
> savings

sr pop15 pop75 dpi ddpi
Australia 11.43 29.35 2.87 2329.68 2.87
Austria 12.07 23.32 4.41 1507.99 3.93
--- cases deleted ---
Malaysia 4.71 47.20 0.66 242.69 5.08

First consider a model with all the predictors:

> g <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings)
> summary(g)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087 7.354516 3.88 0.00033
pop15 -0.461193 0.144642 -3.19 0.00260
pop75 -1.691498 1.083599 -1.56 0.12553
dpi -0.000337 0.000931 -0.36 0.71917
ddpi 0.409695 0.196197 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

We can see directly the result of the test of whether any of the predictors have significance in the model.
In other words, whether β1 , β2 , β3 , β4 , 0. Since the p-value is so small, this null hypothesis is rejected.

We can also do it directly using the F-testing formula:
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> sum((savings$sr-mean(savings$sr))ˆ2)
[1] 983.63
> sum(g$resˆ2)
[1] 650.71
> ((983.63-650.71)/4)/(650.706/45)
[1] 5.7558
> 1-pf(5.7558,4,45)
[1] 0.00079026

Do you know where all the numbers come from? Check that they match the regression summary above.

3.2.2 Testing just one predictor

Can one particular predictor be dropped from the model? The null hypothesis would be H0 : βi - 0. Set it
up like this. RSSΩ is the RSS for the model with all the predictors of interest (p parameters).. RSSω is the RSS for the model with all the above predictors except predictor i.

The F-statistic may be computed using the formula from above. An alternative approach is to use a
t-statistic for testing the hypothesis:

ti - β̂i / se 0 β̂i 1
and check for significance using a t distribution with n 2 p degrees of freedom.

However, squaring the t-statistic here, i.e. t2
i gives you the F-statistic, so the two approaches are identical.

For example, to test the null hypothesis that β1 - 0 i.e. that p15 is not significant in the full model, we
can simply observe that the p-value is 0.0026 from the table and conclude that the null should be rejected.

Let’s do the same test using the general F-testing approach: We’ll need the RSS and df for the full model
— these are 650.71 and 45 respectively.

and then fit the model that represents the null:

> g2 <- lm(sr ˜ pop75 + dpi + ddpi, data=savings)

and compute the RSS and the F-statistic:

> sum(g2$resˆ2)
[1] 797.72
> (797.72-650.71)/(650.71/45)
[1] 10.167

The p-value is then

> 1-pf(10.167,1,45)
[1] 0.0026026

We can relate this to the t-based test and p-value by

> sqrt(10.167)
[1] 3.1886
> 2*(1-pt(3.1886,45))
[1] 0.0026024
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A somewhat more convenient way to compare two nested models is

> anova(g2,g)
Analysis of Variance Table

Model 1: sr ˜ pop75 + dpi + ddpi
Model 2: sr ˜ pop15 + pop75 + dpi + ddpi
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 46 798
2 45 651 1 147 10.2 0.0026

Understand that this test of pop15 is relative to the other predictors in the model, namely pop75, dpi
and ddpi. If these other predictors were changed, the result of the test may be different. This means that it is
not possible to look at the effect of pop15 in isolation. Simply stating the null hypothesis as H0 : βpop15 3 0
is insufficient — information about what other predictors are included in the null is necessary. The result of
the test may be different if the predictors change.

3.2.3 Testing a pair of predictors

Suppose we wish to test the significance of variables X j and Xk. We might construct a table as shown just
above and find that both variables have p-values greater than 0.05 thus indicating that individually neither is
significant. Does this mean that both X j and Xk can be eliminated from the model? Not necessarily

Except in special circumstances, dropping one variable from a regression model causes the estimates of
the other parameters to change so that we might find that after dropping X j, that a test of the significance of
Xk shows that it should now be included in the model.

If you really want to check the joint significance of X j and Xk, you should fit a model with and then
without them and use the general F-test discussed above. Remember that even the result of this test may
depend on what other predictors are in the model.

Can you see how to test the hypothesis that both pop75 and ddpi may be excluded from the model?

45 67
89 :;

45 67
45 67< < <>=????????@ AAAAA B

C C C C�D
EEE F y ˜ x1 + x2 + x3

y ˜ x1 + x2 y ˜ x1 + x3

y ˜ x1

Figure 3.2: Testing two predictors

The testing choices are depicted in Figure 3.2. Here we are considering two predictors, x2 and x3 in
the presence of x1. Five possible tests may be considered here and the results may not always be appar-
ently consistent. The results of each test need to be considered individually in the context of the particular
example.
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3.2.4 Testing a subspace

Consider this example. Suppose that y is the miles-per-gallon for a make of car and X j is the weight of the
engine and Xk is the weight of the rest of the car. There would also be some other predictors. We might
wonder whether we need two weight variables — perhaps they can be replaced by the total weight, X j G Xk.
So if the original model was

y H β0 GJI�I�I�G β jX j G βkXk GJI�I�I�G ε

then the reduced model is
y H β0 GJI�I�IKG βl L X j G Xk MNGJI�I�I�G ε

which requires that β j H βk for this reduction to be possible. So the null hypothesis is

H0 : β j H βk

This defines a linear subspace to which the general F-testing procedure applies. In our example, we might
hypothesize that the effect of young and old people on the savings rate was the same or in other words that

H0 : βpop15 H βpop75

In this case the null model would take the form

y H β0 G βpop15 L pop15 G pop75 MOG βdpid pi G βddpidd pi G ε

We can then compare this to the full model as follows:

> g <- lm(sr ˜ .,savings)
> gr <- lm(sr ˜ I(pop15+pop75)+dpi+ddpi,savings)
> anova(gr,g)
Analysis of Variance Table

Model 1: sr ˜ I(pop15 + pop75) + dpi + ddpi
Model 2: sr ˜ pop15 + pop75 + dpi + ddpi
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 46 674
2 45 651 1 23 1.58 0.21

The period in the first model formula is short hand for all the other variables in the data frame. The
function I() ensures that the argument is evaluated rather than interpreted as part of the model formula.
The p-value of 0.21 indicates that the null cannot be rejected here meaning that there is not evidence here
that young and old people need to be treated separately in the context of this particular model.

Suppose we want to test whether one of the coefficients can be set to a particular value. For example,

H0 : βddpi H 1

Here the null model would take the form:

y H β0 G βpop15 pop15 G βpop75 pop75 G βdpid pi G dd pi G ε

Notice that there is now no coefficient on the ddpi term. Such a fixed term in the regression equation is
called an offset. We fit this model and compare it to the full:
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> gr <- lm(sr ˜ pop15+pop75+dpi+offset(ddpi),savings)
> anova(gr,g)
Analysis of Variance Table

Model 1: sr ˜ pop15 + pop75 + dpi + offset(ddpi)
Model 2: sr ˜ pop15 + pop75 + dpi + ddpi
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 46 782
2 45 651 1 131 9.05 0.0043

We see that the p-value is small and the null hypothesis here is soundly rejected. A simpler way to test such
point hypotheses is to use a t-statistic:

t PRQ β̂ S c T�U se Q β̂ T
where c is the point hypothesis. So in our example the statistic and corresponding p-value is

> tstat <- (0.409695-1)/0.196197
> tstat
[1] -3.0087
> 2*pt(tstat,45)
[1] 0.0042861

We can see the p-value is the same as before and if we square the t-statistic

> tstatˆ2
[1] 9.0525

we find we get the F-value. This latter approach is preferred in practice since we don’t need to fit two
models but it is important to understand that it is equivalent to the result obtained using the general F-testing
approach.

Can we test a hypothesis such as
H0 : β jβk P 1

using our general theory?
No. This hypothesis is not linear in the parameters so we can’t use our general method. We’d need to fit

a non-linear model and that lies beyond the scope of this book.

3.3 Concerns about Hypothesis Testing

1. The general theory of hypothesis testing posits a population from which a sample is drawn — this is
our data. We want to say something about the unknown population values β using estimated values
β̂ that are obtained from the sample data. Furthermore, we require that the data be generated using a
simple random sample of the population. This sample is finite in size, while the population is infinite
in size or at least so large that the sample size is a negligible proportion of the whole. For more
complex sampling designs, other procedures should be applied, but of greater concern is the case
when the data is not a random sample at all. There are two cases:

(a) A sample of convenience is where the data is not collected according to a sampling design.
In some cases, it may be reasonable to proceed as if the data were collected using a random
mechanism. For example, suppose we take the first 400 people from the phonebook whose
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names begin with the letter P. Provided there is no ethnic effect, it may be reasonable to consider
this a random sample from the population defined by the entries in the phonebook. Here we
are assuming the selection mechanism is effectively random with respect to the objectives of the
study. An assessment of exchangeability is required - are the data as good as random? Other
situations are less clear cut and judgment will be required. Such judgments are easy targets for
criticism. Suppose you are studying the behavior of alcoholics and advertise in the media for
study subjects. It seems very likely that such a sample will be biased perhaps in unpredictable
ways. In cases such as this, a sample of convenience is clearly biased in which case conclusions
must be limited to the sample itself. This situation reduces to the next case, where the sample is
the population.
Sometimes, researchers may try to select a “representative” sample by hand. Quite apart from
the obvious difficulties in doing this, the logic behind the statistical inference depends on the
sample being random. This is not to say that such studies are worthless but that it would be
unreasonable to apply anything more than descriptive statistical techniques. Confidence in the
of conclusions from such data is necessarily suspect.

(b) The sample is the complete population in which case one might argue that inference is not
required since the population and sample values are one and the same. For both regression
datasets we have considered so far, the sample is effectively the population or a large and biased
proportion thereof.
In these situations, we can put a different meaning to the hypothesis tests we are making. For
the Galapagos dataset, we might suppose that if the number of species had no relation to the
five geographic variables, then the observed response values would be randomly distributed
between the islands without relation to the predictors. We might then ask what the chance would
be under this assumption that an F-statistic would be observed as large or larger than one we
actually observed. We could compute this exactly by computing the F-statistic for all possible
(30!) permutations of the response variable and see what proportion exceed the observed F-
statistic. This is a permutation test. If the observed proportion is small, then we must reject the
contention that the response is unrelated to the predictors. Curiously, this proportion is estimated
by the p-value calculated in the usual way based on the assumption of normal errors thus saving
us from the massive task of actually computing the regression on all those computations.
Let see how we can apply the permutation test to the savings data. I chose a model with just
pop75 and dpi so as to get a p-value for the F-statistic that is not too small.

> g <- lm(sr ˜ pop75+dpi,data=savings)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.056619 1.290435 5.47 1.7e-06
pop75 1.304965 0.777533 1.68 0.10
dpi -0.000341 0.001013 -0.34 0.74

Residual standard error: 4.33 on 47 degrees of freedom
Multiple R-Squared: 0.102, Adjusted R-squared: 0.0642
F-statistic: 2.68 on 2 and 47 degrees of freedom, p-value: 0.0791

We can extract the F-statistic as

> gs <- summary(g)
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> gs$fstat
value numdf dendf
2.6796 2.0000 47.0000

The function sample() generates random permutations. We compute the F-statistic for 1000
randomly selected permutations and see what proportion exceed the the F-statistic for the origi-
nal data:

> fstats <- numeric(1000)
> for(i in 1:1000){
+ ge <- lm(sample(sr) ˜ pop75+dpi,data=savings)
+ fstats[i] <- summary(ge)$fstat[1]
+ }
> length(fstats[fstats > 2.6796])/1000
[1] 0.092

So our estimated p-value using the permutation test is 0.092 which is close to the normal theory
based value of 0.0791. We could reduce variability in the estimation of the p-value simply
by computing more random permutations. Since the permutation test does not depend on the
assumption of normality, we might regard it as superior to the normal theory based value.
Thus it is possible to give some meaning to the p-value when the sample is the population or
for samples of convenience although one has to be clear that one’s conclusion apply only the
particular sample.
Tests involving just one predictor also fall within the permutation test framework. We permute
that predictor rather than the response
Another approach that gives meaning to the p-value when the sample is the population involves
the imaginative concept of “alternative worlds” where the sample/population at hand is sup-
posed to have been randomly selected from parallel universes. This argument is definitely more
tenuous.

2. A model is usually only an approximation of underlying reality which makes the meaning of the pa-
rameters debatable at the very least. We will say more on the interpretation of parameter estimates
later but the precision of the statement that β1 V 0 exactly is at odds with the acknowledged approx-
imate nature of the model. Furthermore, it is highly unlikely that a predictor that one has taken the
trouble to measure and analyze has exactly zero effect on the response. It may be small but it won’t
be zero.

This means that in many cases, we know that the point null hypothesis is false without even looking
at the data. Furthermore, we know that the more data we have, the greater the power of our tests.
Even small differences from zero will be detected with a large sample. Now if we fail to reject the
null hypothesis, we might simply conclude that we didn’t have enough data to get a significant result.
According to this view, the hypothesis test just becomes a test of sample size. For this reason, I prefer
confidence intervals.

3. The inference depends on the correctness of the model we use. We can partially check the assumptions
about the model but there will always be some element of doubt. Sometimes the data may suggest
more than one possible model which may lead to contradictory results.

4. Statistical significance is not equivalent to practical significance. The larger the sample, the smaller
your p-values will be so don’t confuse p-values with a big predictor effect. With large datasets it will
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be very easy to get statistically significant results, but the actual effects may be unimportant. Would
we really care if test scores were 0.1% higher in one state than another? Or that some medication
reduced pain by 2%? Confidence intervals on the parameter estimates are a better way of assessing
the size of an effect. There are useful even when the null hypothesis is not rejected because they tell
us how confident we are that the true effect or value is close to the null.

Even so, hypothesis tests do have some value, not least because they impose a check on unreasonable
conclusions which the data simply does not support.

3.4 Confidence Intervals for β

Confidence intervals provide an alternative way of expressing the uncertainty in our estimates. Even so, they
are closely linked to the tests that we have already constructed. For the confidence intervals and regions that
we will consider here, the following relationship holds. For a 100 W 1 X α Y % confidence region, any point
that lies within the region represents a null hypothesis that would not be rejected at the 100α% level while
every point outside represents a null hypothesis that would be rejected. So, in a sense, the confidence region
provides a lot more information than a single hypothesis test in that it tells us the outcome of a whole range
of hypotheses about the parameter values. Of course, by selecting the particular level of confidence for the
region, we can only make tests at that level and we cannot determine the p-value for any given test simply
from the region. However, since it is dangerous to read too much into the relative size of p-values (as far as
how much evidence they provide against the null), this loss is not particularly important.

The confidence region tells us about plausible values for the parameters in a way that the hypothesis test
cannot. This makes it more valuable.

As with testing, we must decide whether to form confidence regions for parameters individually or
simultaneously. Simultaneous regions are preferable but for more than two dimensions they are difficult to
display and so there is still some value in computing the one-dimensional confidence intervals.

We start with the simultaneous regions. Some results from multivariate analysis show thatW β̂ X β Y T XT X W β̂ X β Y
σ2 Z χ2

p

and W n X p Y σ̂2

σ2 Z χ2
n [ p

and these two quantities are independent. HenceW β̂ X β Y T XT X W β̂ X β Y
pσ̂2 Z χ2

p \ p

χ2
n [ p \ W n X p Y^] Fp _ n [ p

So to form a 100 W 1 X α Y % confidence region for β, take β such thatW β̂ X β Y T XT X W β̂ X β Ya` pσ̂2F b α cp _ n [ p

These regions are ellipsoidally shaped. Because these ellipsoids live in higher dimensions, they cannot
easily be visualized.

Alternatively, one could consider each parameter individually which leads to confidence intervals which
take the general form of

estimate d critical value e s f e f of estimate
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or specifically in this case:

β̂i g t h α i 2 jn k p σ̂ l m XT X n k 1
ii

It’s better to consider the joint confidence intervals when possible, especially when the β̂ are heavily
correlated.

Consider the full model for the savings data. The . in the model formula stands for “every other variable
in the data frame” which is a useful abbreviation.

> g <- lm(sr ˜ ., savings)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.566087 7.354516 3.88 0.00033
pop15 -0.461193 0.144642 -3.19 0.00260
pop75 -1.691498 1.083599 -1.56 0.12553
dpi -0.000337 0.000931 -0.36 0.71917
ddpi 0.409695 0.196197 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

We can construct individual 95% confidence intervals for the regression parameters of pop75:

> qt(0.975,45)
[1] 2.0141
> c(-1.69-2.01*1.08,-1.69+2.01*1.08)
[1] -3.8608 0.4808

and similarly for growth

> c(0.41-2.01*0.196,0.41+2.01*0.196)
[1] 0.01604 0.80396

Notice that this confidence interval is pretty wide in the sense that the upper limit is about 50 times larger
than the lower limit. This means that we are not really that confident about what the exact effect of growth
on savings really is.

Confidence intervals often have a duality with two-sided hypothesis tests. A 95% confidence interval
contains all the null hypotheses that would not be rejected at the 5% level. Thus the interval for pop75
contains zero which indicates that the null hypothesis H0 : βpop75 o 0 would not be rejected at the 5% level.
We can see from the output above that the p-value is 12.5% — greater than 5% — confirming this point. In
contrast, we see that the interval for ddpi does not contain zero and so the null hypothesis is rejected for
its regression parameter.

Now we construct the joint 95% confidence region for these parameters. First we load in a ”library” for
drawing confidence ellipses which is not part of base R:

> library(ellipse)

and now the plot:
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> plot(ellipse(g,c(2,3)),type="l",xlim=c(-1,0))

add the origin and the point of the estimates:

> points(0,0)
> points(g$coef[2],g$coef[3],pch=18)

How does the position of the origin relate to a test for removing pop75 and pop15?
Now we mark the one way confidence intervals on the plot for reference:

> abline(v=c(-0.461-2.01*0.145,-0.461+2.01*0.145),lty=2)
> abline(h=c(-1.69-2.01*1.08,-1.69+2.01*1.08),lty=2)

See the plot in Figure 3.3.
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Figure 3.3: Confidence ellipse and regions for βpop75 and βpop15

Why are these lines not tangential to the ellipse? The reason for this is that the confidence intervals are
calculated individually. If we wanted a 95% chance that both intervals contain their true values, then the
lines would be tangential.

In some circumstances, the origin could lie within both one-way confidence intervals, but lie outside the
ellipse. In this case, both one-at-a-time tests would not reject the null whereas the joint test would. The latter
test would be preferred. It’s also possible for the origin to lie outside the rectangle but inside the ellipse. In
this case, the joint test would not reject the null whereas both one-at-a-time tests would reject. Again we
prefer the joint test result.

Examine the correlation of the two predictors:

> cor(savings$pop15,savings$pop75)
[1] -0.90848

But from the plot, we see that coefficients have a positive correlation. The correlation between predictors
and the correlation between the coefficients of those predictors are often different in sign. Intuitively, this
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can be explained by realizing that two negatively correlated predictors are attempting to the perform the
same job. The more work one does, the less the other can do and hence the positive correlation in the
coefficients.

3.5 Confidence intervals for predictions

Given a new set of predictors, x0 what is the predicted response? Easy — just ŷ0 p xT
0 β̂. However, we need

to distinguish between predictions of the future mean response and predictions of future observations. To
make the distinction, suppose we have built a regression model that predicts the selling price of homes in a
given area that is based on predictors like the number of bedrooms, closeness to a major highway etc. There
are two kinds of predictions that can be made for a given x0.

1. Suppose a new house comes on the market with characteristics x0. Its selling price will be xT
0 β q ε.

Since Eε p 0, the predicted price is xT
0 β̂ but in assessing the variance of this prediction, we must

include the variance of ε.

2. Suppose we ask the question — “What would the house with characteristics x0” sell for on average.
This selling price is xT

0 β and is again predicted by xT
0 β̂ but now only the variance in β̂ needs to be

taken into account.

Most times, we will want the first case which is called “prediction of a future value” while the second case,
called “prediction of the mean response” is less common.

Now var r xT
0 β̂ s p xT

0 r XT X s�t 1x0σ2.
A future observation is predicted to be xT

0 β̂ q ε (where we don’t what the future ε will turn out to be).
So a 100 r 1 u α s % confidence interval for a single future response is

ŷ0 v t w α x 2 yn t p σ̂ z 1 q xT
0 r XT X s t 1x0

If on the other hand, you want a confidence interval for the average of the responses for given x0 then use

ŷ0 v t w α x 2 yn t p σ̂ z xT
0 r XT X s t 1x0

We return to the Galapagos data for this example.

> g <- lm(Species ˜ Area+Elevation+Nearest+Scruz+Adjacent,data=gala)

Suppose we want to predict the number of species (of tortoise) on an island with predictors 0.08,93,6.0,12.0,0.34
(same order as in the dataset). Of course it is difficult to see why in practice we would want to do this be-
cause a new island is unlikely to present itself. For a dataset like this interest would center on the structure of
the model and relative importance of the predictors, so we should regard this more as a ”what if?” exercise.

Do it first directly from the formula:

> x0 <- c(1,0.08,93,6.0,12.0,0.34)
> y0 <- sum(x0*g$coef)
> y0
[1] 33.92
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This is the predicted no. of species which is not a whole number as the response is. We could round up
to 34.

Now if we want a 95% confidence interval for the prediction, we must decide whether we are predicting
the number of species on one new island or the mean response for all islands with same predictors x0.
Possibly, an island might not have been surveyed for the original dataset in which case the former interval
would be the one we want. For this dataset, the latter interval would be more valuable for “what if?” type
calculations.

First we need the t-critical value:

> qt(0.975,24)
[1] 2.0639

You may need to recalculate the { X T X |�} 1 matrix:

> x <- cbind(1,gala[,3:7])
> x <- as.matrix(x)
> xtxi <- solve(t(x) %*% x)

The width of the bands for mean response CI is

> bm <- sqrt(x0 %*% xtxi %*% x0) *2.064 * 60.98
> bm

[,1]
[1,] 32.89

and the interval is

> c(y0-bm,y0+bm)
[1] 1.0296 66.8097

Now we compute the prediction interval for the single future response.

> bm <- sqrt(1+x0 %*% xtxi %*% x0) *2.064 * 60.98
> c(y0-bm,y0+bm)
[1] -96.17 164.01

What physically unreasonable feature do you notice about it? In such instances, impossible values
in the confidence interval can be avoided by transforming the response, say taking logs, (explained in a
later chapter) or by using a probability model more appropriate to the response. The normal distribution is
supported on the whole real line and so negative values are always possible. A better choice for this example
might be the Poisson distribution which is supported on the non-negative integers.

There is a more direct method for computing the CI. The function predict() requires that its second
argument be a data frame with variables named in the same way as the original dataset:

> predict(g,data.frame(Area=0.08,Elevation=93,Nearest=6.0,Scruz=12,
Adjacent=0.34),se=T)

$fit:
33.92
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$se.fit:
15.934

$df:
[1] 24

$residual.scale:
[1] 60.975

The width of the mean response interval can then be calculated by multiplying the se for the fit by the
appropriate t-critical value:

> 15.934*2.064
[1] 32.888

which matches what we did before. CI’s for the single future response could also be derived.

3.6 Orthogonality

Suppose we can partition X in two, X ~R�X1 �X2 � such that XT
1 X2 ~ 0. So now

Y ~ Xβ � ε ~ X1β1 � X2β2 � ε

and

XT X ~�� XT
1 X1 XT

1 X2
XT

2 X1 XT
2 X2 � ~�� XT

1 X1 0
0 XT

2 X2 �
which means

β̂1 ~'� XT
1 X1 ��� 1XT

1 y β̂2 ~R� XT
2 X2 ��� 1XT

2 y

Notice that β̂1 will be the same regardless of whether X2 is in the model or not (and vice versa). Now if we
wish to test H0 : β1 ~ 0, it should be noted that RSSΩ � d f ~ σ̂2

Ω will be different depending on whether X2
is included in the model or not but the difference in F is not liable to be so large as in non-orthogonal cases.

Orthogonality is a desirable property but will only occur when X is chosen by the experimenter (it is a
feature of a good design). In observational data, we do not have direct control over X which is the source of
much of the interpretational difficulties associated with non-experimental data.

Here’s an example of an experiment to determine the effects of column temperature, gas/liquid ratio and
packing height in reducing unpleasant odor of chemical product that was being sold for household use.

Read the data in and display.

> data(odor)
> odor

odor temp gas pack
1 66 -1 -1 0
2 39 1 -1 0
3 43 -1 1 0
4 49 1 1 0
5 58 -1 0 -1
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6 17 1 0 -1
7 -5 -1 0 1
8 -40 1 0 1
9 65 0 -1 -1

10 7 0 1 -1
11 43 0 -1 1
12 -22 0 1 1
13 -31 0 0 0
14 -35 0 0 0
15 -26 0 0 0

The three predictors have been transformed from their original scale of measurement, for example temp
= (Fahrenheit-80)/40 so the original values of the predictor were 40,80 and 120. I don’t know the scale of
measurement for odor.

Here’s the X-matrix:

> x <- as.matrix(cbind(1,odor[,-1]))

and XT X :

> t(x) %*% x
1 temp gas pack

1 15 0 0 0
temp 0 8 0 0
gas 0 0 8 0

pack 0 0 0 8

The matrix is diagonal. What would happen if temp was measured in the original Fahrenheit scale? The
matrix would still be diagonal but the entry corresponding to temp would change.

Now fit a model:

> g <- lm(odor ˜ temp + gas + pack, data=odor)
> summary(g,cor=T)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.2 9.3 1.63 0.13
temp -12.1 12.7 -0.95 0.36
gas -17.0 12.7 -1.34 0.21
pack -21.4 12.7 -1.68 0.12

Residual standard error: 36 on 11 degrees of freedom
Multiple R-Squared: 0.334, Adjusted R-squared: 0.152
F-statistic: 1.84 on 3 and 11 degrees of freedom, p-value: 0.199

Correlation of Coefficients:
(Intercept) temp gas

temp -1.52e-17
gas -1.52e-17 4.38e-17
pack 0.00e+00 0.00e+00 0
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Check out the correlation of the coefficients - why did that happen?. Notice that the standard errors for
the coefficients are equal due to the balanced design. Now drop one of the variables:

> g <- lm(odor ˜ gas + pack, data=odor)
> summary(g)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.20 9.26 1.64 0.13
gas -17.00 12.68 -1.34 0.20
pack -21.37 12.68 -1.69 0.12

Residual standard error: 35.9 on 12 degrees of freedom
Multiple R-Squared: 0.279, Adjusted R-squared: 0.159
F-statistic: 2.32 on 2 and 12 degrees of freedom, p-value: 0.141

Which things changed - which stayed the same? The coefficients themselves do not change but the resid-
ual standard error does change slightly which causes small changes in the standard errors of the coefficients,
t-statistics and p-values, but nowhere near enough to change our qualitative conclusions.

That was data from an experiment so it was possible to control the values of the predictors to ensure
orthogonality. Now consider the savings data which is observational:

> g <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, savings)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.566087 7.354516 3.88 0.00033
pop15 -0.461193 0.144642 -3.19 0.00260
pop75 -1.691498 1.083599 -1.56 0.12553
dpi -0.000337 0.000931 -0.36 0.71917
ddpi 0.409695 0.196197 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

Drop pop15 from the model:

> g <- update(g, . ˜ . - pop15)
> summary(g)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.487494 1.427662 3.84 0.00037
pop75 0.952857 0.763746 1.25 0.21849
dpi 0.000197 0.001003 0.20 0.84499
ddpi 0.473795 0.213727 2.22 0.03162
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Residual standard error: 4.16 on 46 degrees of freedom
Multiple R-Squared: 0.189, Adjusted R-squared: 0.136
F-statistic: 3.57 on 3 and 46 degrees of freedom, p-value: 0.0209

What changed? By how much? Pay particular attention to pop75. The effect has now become positive
whereas it was negative. Granted, in neither case is it significant, but it is not uncommon in other datasets
for such sign changes to occur and for them to be significant.

3.7 Identifiability

The least squares estimate is the solution to the normal equations:

XT X β̂ � XT y

where X is an n � p matrix. If X T X is singular and cannot be inverted, then there will be infinitely many
solutions to the normal equations and β̂ is at least partially unidentifiable.

Unidentifiability will occur when X is not of full rank — when its columns are linearly dependent. With
observational data, unidentifiability is usually caused by some oversight: Here are some examples:

1. A person’s weight is measured both in pounds and kilos and both variables are entered into the model.

2. For each individual we record no. of years of education K-12 and no. of years of post-HS education
and also the total no. of years of education and put all three variables into the model.

3. p � n — more variables than cases. When p � n, we may perhaps estimate all the parameters, but
with no degrees of freedom left to estimate any standard errors or do any testing. Such a model is
called saturated. When p � n, then the model is called supersaturated. Oddly enough, such models
are considered in large scale screening experiments used in product design and manufacture, but there
is no hope of uniquely estimating all the parameters in such a model.

Such problems can be avoided by paying attention. Identifiability is more of an issue in designed experi-
ments. Consider a simple two sample experiment:

Response
Treatment y1 ��������� yn

Control yn � 1 ��������� ym � n
Suppose we try to model the response by an overall mean µ and group effects α1 and α2:

y j � µ � αi � ε j i � 1 � 2 j � 1 ��������� m � n�������� y1�����
yn

yn � 1�����
ym � n

��������� �
�������� 1 1 0�����

1 1 0
1 0 1� � �
1 0 1

���������
��

µ
α1
α2

�� � ������ ε1���������������
εm � n

�������
Now although X has 3 columns, it has only rank 2 — � µ � α1 � α2 � are not identifiable and the normal

equations have infinitely many solutions. We can solve this problem by imposing some constraints, µ � 0
or α1 � α2 � 0 for example.
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Statistics packages handle non-identifiability differently. In the regression case above, some may return
error messages and some may fit models because rounding error may remove the exact identifiability. In
other cases, constraints may be applied but these may be different from what you expect.

Identifiability means that

1. You have insufficient data to estimate the parameters of interest or

2. You have more parameters than are necessary to model the data.

Here’s an example. Suppose we create a new variable for the savings dataset - the percentage of people
between 15 and 75:

> pa <- 100-savings$pop15-savings$pop75

and add that to the model:

> g <- lm(sr ˜ pa + pop15 + pop75 + dpi + ddpi, data=savings)
> summary(g)
Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.41e+02 1.03e+02 -1.37 0.177
pa 1.69e+00 1.08e+00 1.56 0.126
pop15 1.23e+00 9.77e-01 1.26 0.215
dpi -3.37e-04 9.31e-04 -0.36 0.719
ddpi 4.10e-01 1.96e-01 2.09 0.042

We get a message about one undefined coefficient because the rank of the design matrix X is 5 but should
be 6.

Let’s take a look at the X-matrix:

> x <- as.matrix(cbind(1,pa,savings[,-1]))
> dimnames(x) <- list(row.names(savings),c("int","pa","p15","p75",
"dpi","ddpi"))

If we didn’t know which linear combination was causing the trouble, how would we find out? An eigen
decomposition of X T X can help:

> e <- eigen(t(x) %*% x)
> signif(e$values,3)
[1] 1.10e+08 1.10e+05 3.19e+03 3.74e+02 1.37e+01 1.09e-14
> signif(e$vectors,3)
int 0.000506 0.0141 -0.00125 0.000603 0.00989 1.00e+00
pa 0.034300 0.7940 0.59700 0.098100 -0.05630 -1.00e-02
p15 0.014700 0.6040 -0.79500 -0.031000 0.04800 -1.00e-02
p75 0.001610 0.0164 0.07310 -0.006840 0.99700 -1.00e-02
dpi 0.999000 -0.0363 -0.00906 -0.001170 -0.00036 -1.07e-17
ddpi 0.001740 0.0594 0.08310 -0.995000 -0.01390 -4.97e-16
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Only the last eigenvalue is zero, indicating one linear combination is the problem. We can deter-
mine which linear combination from the last eigenvalue (last column of the matrix. From this we see
that 100-pa-p15-p75=0 is the offending combination.

Lack of identifiability is obviously a problem but it is usually easy to identify and work around. More
problematic are cases where we are close to unidentifiability. To demonstrate this, suppose we add a small
random perturbation to the third decimal place of pa by adding a random variate from U ��� 0 � 005 � 0 � 005  
where U denotes the uniform distribution:

> pae <- pa +0.001*(runif(50)-0.5)

and now refit the model:

> ge <- lm(sr ˜ pae+pop15+pop75+dpi+ddpi,savings)
> summary(ge)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.57e+05 1.81e+05 0.87 0.391
pae -1.57e+03 1.81e+03 -0.87 0.391
pop15 -1.57e+03 1.81e+03 -0.87 0.391
pop75 -1.57e+03 1.81e+03 -0.87 0.390
dpi -3.34e-04 9.34e-04 -0.36 0.722
ddpi 4.11e-01 1.97e-01 2.09 0.042

Notice the now all parameters can be estimated but the standard errors are very large because we cannot
estimate them in a stable way. We deliberately caused this problem so we know the cause but in general we
need to be able to identify such situations. We do this in Chapter 9.

3.8 Summary

We have described a linear model y ¡ Xβ ¢ ε. The parameters β may be estimated using least squares
β̂ ¡¤£ XT X ¥�¦ 1XT y. If we further assume that ε § N £ 0 � σ2I ¥ then we can test any linear hypothesis about β,
construct confidence regions for β, make predictions with confidence intervals.

3.9 What can go wrong?

Many things, unfortunately — we try to categorize them below:

3.9.1 Source and quality of the data

How the data was collected directly effects what conclusions we can draw.

1. We may have a biased sample, such as a sample of convenience, from the population of interest. This
makes it very difficult to extrapolate from what we see in the sample to general statements about
the population. As we have seen, in some cases the sample is the population, in which case any
generalization of the conclusions is problematic.

2. Important predictors may not have been observed. This means that our predictions may be poor or we
may misinterpret the relationship between the predictors and the response.
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3. Observational data make causal conclusions problematic — lack of orthogonality makes disentangling
effects difficult. Missing predictors add to this problem.

4. The range and qualitative nature of the data may limit effective predictions. It is unsafe to extrapolate
too much. Carcinogen trials may apply large doses to mice. What do the results say about small
doses applied to humans? Much of the evidence for harm from substances such as asbestos and radon
comes from people exposed to much larger amounts than that encountered in a normal life. It’s clear
that workers in older asbestos manufacturing plants and uranium miners suffered from their respective
exposures to these substances, but what does that say about the danger to you or I?

3.9.2 Error component

We hope that ε ¨ N © 0 ª σ2I « but

1. Errors may be heterogeneous (unequal variance).

2. Errors may be correlated.

3. Errors may not be normally distributed.

The last defect is less serious than the first two because even if the errors are not normal, the β̂’s will
tend to normality due to the power of the central limit theorem. With larger datasets, normality of the data
is not much of a problem.

3.9.3 Structural Component

The structural part of linear model, Ey ¬ Xβ may be incorrect. The model we use may come from different
sources:

1. Physical theory may suggest a model, for example Hooke’s law says that the extension of a spring
is proportional to the weight attached. Models like these usually arise in the physical sciences and
engineering.

2. Experience with past data. Similar data used in the past was modeled in a particular way. It’s natural
to see if the same model will work the current data. Models like these usually arise in the social
sciences.

3. No prior idea - the model comes from an exploration of the data itself.

Confidence in the conclusions from a model declines as we progress through these. Models that derive
directly from physical theory are relatively uncommon so that usually the linear model can only be regarded
as an approximation to a reality which is very complex.

Most statistical theory rests on the assumption that the model is correct. In practice, the best one can
hope for is that the model is a fair representation of reality. A model can be no more than a good portrait.

All models are wrong but some are useful. George Box

is only a slight exaggeration. Einstein said

So far as theories of mathematics are about reality; they are not certain; so far as they are certain,
they are not about reality.
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3.10 Interpreting Parameter Estimates

Suppose we fit a model to obtain the regression equation:

ŷ  β̂0 ® β̂1x1 ®J¯�¯�¯�® β̂pxp

What does β̂1 mean? In some case, a β might represent a real physical constant, but often the statistical
model is just a convenience for representing a complex reality and so the real meaning of a particular β is
not obvious.

Let’s start with a naive interpretation: “A unit change in x1 will produce a change of β̂1 in the response”.
For a properly designed experiment, this interpretation is reasonable provided one pays attention to

concerns such as extrapolation and appropriateness of the model selected. The effects of other variables
that are included in the experiment can separated out if an orthogonal design is used. For variables not
included in the experiment by choice, we may eliminate their effect by holding them constant. If variables
that impact the response are not included because they are not known, we use randomization to control their
effect. The treatments (predictor values) are assigned to the experimental units or subjects at random. This
ensures that these unknown variables will not be correlated in expectation with the predictors we do examine
and allows us to come to causal conclusions. These unknown predictors do not, on the average, affect
the parameter estimates of interest, but they do contribute to the residual standard error so it’s sometimes
better to incorporate them in the experimental design if the become known, as this allows for more precise
inference.

In a few tightly controlled experiments, it is possible to claim that measurement error is the only kind
of error but usually some of the “error” actually comes from the effects of unmeasured variables. We can
decompose the usual model as follows:

y  Xβ ® ε Xβ ® Zγ ® δ

where Z are unincluded predictors and δ is measurement error in the response. We can assume that Eε  0
without any loss of generality, because if Eε  c, we could simply redefine β0 as β0 ® c and the error would
again have expectation zero. This is another reason why it is generally unwise to remove the intercept
term from the model since it acts as a sink for the mean effect of unincluded variables. So we see that ε
incorporates both measurement error and the effect of other variables. In a designed experiment, provided
the assignment of the experimental units is random, we have cor ° X ± Z ²³ 0 so that the estimate of β is
unaffected in expectation by the presence of Z.

For observational data, no randomization can be used in assigning treatments to the units and orthogo-
nality won’t just happen. There are serious objections to any causal conclusions. An inference of causality
is often desired but this is usually too much to expect from observational data. An unmeasured and possible
unsuspected “lurking” variable Z may be the real cause of an observed relationship between y and X . See
Figure 3.4. For example, we will observe a positive correlation among the shoe sizes and reading abilities
of elementary school students but this relationship is driven by a lurking variable — the age of the child.

So in observational studies, because we have no control over the assignment of units, we have cor ° X ± Z ²µ´
0 and the observed or worse, unobserved, presence of Z causes us great difficulty. In Figure 3.5, we see the
effect of possible confounding variables demonstrated.

In observational studies, it is important to adjust for the effects of possible confounding variables such
as the Z shown in Figure 3.5. If such variables can be identified, then at least their effect can be interpreted.
Unfortunately, one can never be sure that the all relevant Z have been identified.
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Figure 3.4: Is the relationship between x and y, really caused by z?

What if all relevant variables have been measured? In other words, suppose there are no unidentified
lurking variables. Even then the naive interpretation does not work. Consider

y ½ β̂0 ¾ β̂1x1 ¾ β̂2x2

but suppose we change x2 ¿ x1 ¾ x2 then

y ½ β̂0 ¾ÁÀ β̂1 Â β̂2 Ã x1 ¾ β̂2 À x1 ¾ x2 Ã
The coefficient for x1 has changed. Interpretation cannot be done separately for each variable. This is a

practical problem because it is not unusual for the predictor of interest, x1 in this example, to be mixed up
in some way with other variables like x2.

Let’s try a new interpretation:
“β̂1 is the effect of x1 when all the other (specified) predictors are held constant”.
This too has problems. Often in practice, individual variables cannot be changed without changing

others too. For example, in economics we can’t expect to change tax rates without other things changing
too. Furthermore, this interpretation requires the specification of the other variables - changing which other
variables are included will change the interpretation. Unfortunately, there is no simple solution.

Just to amplify this consider the effect of pop75 on the savings rate in the savings dataset. I’ll fit four
different models, all including pop75 but varying the inclusion of other variables.

> g <- lm(sr ˜ pop15 + pop75 + dpi + ddpi, data=savings)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.566087 7.354516 3.88 0.00033
pop15 -0.461193 0.144642 -3.19 0.00260
pop75 -1.691498 1.083599 -1.56 0.12553
dpi -0.000337 0.000931 -0.36 0.71917
ddpi 0.409695 0.196197 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079
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Figure 3.5: Possible confounding effects illustrated. Imagine the data is observed within the ellipses. If the
effect of Z is ignored, a strong positive correlation between X and Y is observed in all three cases. In panel
A, we see that when we allow for the effect of Z by observing the relationship between X and Y separately
within each level of Z, that the relationship remains a positive correlation. In panel B, after allowing for Z,
there is no correlation between X and Y, while in panel C, after allowing for Z, the relationship becomes a
negative correlation.

It is perhaps surprising that pop75 is not significant in this model. However, pop75 is negatively correlated
with pop15 since countries with proportionately more younger people are likely to relatively fewer older
ones and vice versa. These two variables are both measuring the nature of the age distribution in a country.
When two variables that represent roughly the same thing are included in a regression equation, it is not
unusual for one (or even both) of them to appear insignificant even though prior knowledge about the effects
of these variables might lead one to expect them to be important.

> g2 <- lm(sr ˜ pop75 + dpi + ddpi, data=savings)
> summary(g2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.487494 1.427662 3.84 0.00037
pop75 0.952857 0.763746 1.25 0.21849
dpi 0.000197 0.001003 0.20 0.84499
ddpi 0.473795 0.213727 2.22 0.03162

Residual standard error: 4.16 on 46 degrees of freedom
Multiple R-Squared: 0.189, Adjusted R-squared: 0.136
F-statistic: 3.57 on 3 and 46 degrees of freedom, p-value: 0.0209

We note that the income variable dpi and pop75 are both not significant in this model and yet one might
expect both of them to have something to do with savings rates. Higher values of these variables are both
associated with wealthier countries. Let’s see what happens when we drop dpi from the model:

> g3 <- lm(sr ˜ pop75 + ddpi, data=savings)
> summary(g3)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.470 1.410 3.88 0.00033
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pop75 1.073 0.456 2.35 0.02299
ddpi 0.464 0.205 2.26 0.02856

Residual standard error: 4.12 on 47 degrees of freedom
Multiple R-Squared: 0.188, Adjusted R-squared: 0.154
F-statistic: 5.45 on 2 and 47 degrees of freedom, p-value: 0.00742

Now pop75 is statistically significant with a positive coefficient. We try dropping ddpi:

> g4 <- lm(sr ˜ pop75, data=savings)
> summary(g4)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.152 1.248 5.73 6.4e-07
pop75 1.099 0.475 2.31 0.025

Residual standard error: 4.29 on 48 degrees of freedom
Multiple R-Squared: 0.1, Adjusted R-squared: 0.0814
F-statistic: 5.34 on 1 and 48 degrees of freedom, p-value: 0.0251

The coefficient and p-value do not change much here due to the low correlation between pop75 and ddpi.
Compare the coefficients and p-values for pop75 throughout. Notice how the sign and significance

change in Table3.2.

No. of Preds Sign Significant?
4 - no
3 + no
2 + yes
1 + yes

Table 3.2: Sign and Significance of β̂pop75

We see that the significance and the direction of the effect of pop75 change according to what other
variables are also included in the model. We see that no simple conclusion about the effect of pop75 is
possible. We must find interpretations for a variety of models. We certainly won’t be able to make any
causal conclusions.

In observational studies, there are steps one can take to make a stronger case for causality:

1. Try to include all relevant variables

2. Use non-statistical knowledge of the physical nature of the relationship.

3. Try a variety of models - see if a similar effect is observed. Is β̂1 similar, no matter what the model?

4. Multiple studies under different conditions can help confirm a relationship. The connection between
smoking and lung cancer was suspected since the early 50’s but other explanations for the effect were
proposed. It was many years before other plausible explanations were eliminated.

The news media often jump on the results of a single study but one should be suspicious of these one
off results. Publication bias is a problem. Many scientific journal will not publish the results of a



3.10. INTERPRETING PARAMETER ESTIMATES 52

study whose conclusions do not reject the null hypothesis. If different researchers keep studying the
same relationship, sooner or later one of them will come up with a significant effect even if one really
doesn’t exist. It’s not easy to find out about all the studies with negative results so it is easy to make
the wrong conclusions.

Another source of bias is that researchers have a vested interest in obtaining a positive result. There
is often more than one way to analyze the data and the researchers may be tempted to pick the one
that gives them the results they want. This is not overtly dishonest but it does lead to a bias towards
positive results.

It’s difficult to assess the evidence in these situations and one can never be certain. The history of the
study of the link between smoking and lung cancer shows that it takes a great deal of effort to progress
beyond the observation of an association to strong evidence of causation. One can never be 100% sure.

An alternative approach is recognize that the parameters and their estimates are fictional quantities in
most regression situations. The “true” values may never be known (if they even exist in the first place).
Instead concentrate on predicting future values - these may actually be observed and success can then be
measured in terms of how good the predictions were.

Consider a prediction made using each of the four models above:

> x0 <- data.frame(pop15=32,pop75=3,dpi=700,ddpi=3)
> predict(g,x0)
[1] 9.7267
> predict(g2,x0)
[1] 9.9055
> predict(g3,x0)
[1] 10.078
> predict(g4,x0)
[1] 10.448

Prediction is more stable than parameter estimation. This enables a rather cautious interpretation of β̂1.
Suppose the predicted value of y is ŷ for given x1 and for other given predictor values. Now suppose we
observe x1 Ä 1 and the same other given predictor values then the predicted response is increased by β̂1.
Notice that I have been careful to not to say that we have taken a specific individual and increased their x1
by 1, rather we have observed a new individual with predictor x1 Ä 1. To put it another way, people with
yellow fingers tend to be smokers but making someone’s fingers yellow won’t make them more likely to
smoke.

Prediction is conceptually simpler since interpretation is not an issue but you do need to worry about
extrapolation.

1. Quantitative extrapolation: Is the new x0 within the range of validity of the model. Is it close to
the range of the original data? If not, the prediction may be unrealistic. Confidence intervals for
predictions get wider as we move away from the data. We can compute these bands for our last
model:

> grid <- seq(0,10,0.1)
> p <- predict(g4,data.frame(pop75=grid),se=T)
> cv <- qt(0.975,48)
> matplot(grid,cbind(p$fit,p$fit-cv*p$se,p$fit+cv*p$se),lty=c(1,2,2),
type="l",xlab="pop75",ylab="Saving")

> rug(savings$pop75)
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We see that the confidence bands in Figure 3.6 become wider as we move away from the range of the
data. However, this widening does not reflect the possibility that the structure of the model itself may
change as we move into new territory. The uncertainty in the parametric estimates is allowed for but
not uncertainty about the model itself. In Figure 3.7, we see that a model may fit well in the range of
the data, but outside of that range, the predictions may be very bad.
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Figure 3.6: Predicted pop75 over a range of values with 95% pointwise confidence bands for the mean
response shown as dotted lines. A “rug” shows the location of the observed values of pop75

2. Qualitative extrapolation: Is the new x0 drawn from the same population from which the original
sample was drawn. If the model was built in the past and is to be used for future predictions, we must
make a difficult judgment as to whether conditions have remained constant enough for this to work.

Let’s end with a quote from the 4th century. Prediction is a tricky business — perhaps the only thing
worse than a prediction is no prediction at all.

The good Christian should beware of mathematicians and all those who make empty prophecies.
The danger already exists that mathematicians have made a covenant with the devil to darken
the spirit and confine man in the bonds of Hell. - St. Augustine
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Figure 3.7: Dangers of extrapolation: The model is shown in solid, the real relationship by the dotted line.
The data all lie in the predictor range [0,1]


