
Chapter 5

Generalized Least Squares

5.1 The general case

Until now we have assumed that var ε � σ2I but it can happen that the errors have non-constant variance or
are correlated. Suppose instead that var ε � σ2Σ where σ2 is unknown but Σ is known — in other words we
know the correlation and relative variance between the errors but we don’t know the absolute scale.

Generalized least squares minimizes
�
y � Xβ � T Σ � 1 � y � Xβ �

which is solved by
β̂ � �

XT Σ � 1X � � 1XT Σ � 1y

Since we can write Σ � SST , where S is a triangular matrix using the Choleski Decomposition, we have
�
y � Xβ � T S � T S � 1 � y � Xβ � � �

S � 1y � S � 1Xβ � T �
S � 1y � S � 1Xβ �

So GLS is like regressing S � 1X on S � 1y. Furthermore

y � Xβ � ε
S � 1y � S � 1Xβ � S � 1ε

y � � X � β � ε �
So we have a new regression equation y � � X � β � ε � where if we examine the variance of the new errors, ε �
we find

var ε � � var
�
S � 1ε � � S � 1 � var ε � S � T � S � 1σ2SST S � T � σ2I

So the new variables y � and X � are related by a regression equation which has uncorrelated errors with
equal variance. Of course, the practical problem is that Σ may not be known.

We find that
var β̂ � �

XT Σ � 1X � � 1σ2 �
To illustrate this we’ll use a built-in R dataset called Longley’s regression data where the response is

number of people employed, yearly from 1947 to 1962 and the predictors are GNP implicit price deflator
(1954=100), GNP, unemployed, armed forces, noninstitutionalized population 14 years of age and over, and
year. The data originally appeared in Longley (1967)

Fit a linear model.
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> data(longley)
> g <- lm(Employed ˜ GNP + Population, data=longley)
> summary(g,cor=T)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.9388 13.7850 6.45 2.2e-05
GNP 0.0632 0.0106 5.93 5.0e-05
Population -0.4097 0.1521 -2.69 0.018

Residual standard error: 0.546 on 13 degrees of freedom
Multiple R-Squared: 0.979, Adjusted R-squared: 0.976
F-statistic: 304 on 2 and 13 degrees of freedom, p-value: 1.22e-11

Correlation of Coefficients:
(Intercept) GNP

GNP 0.985
Population -0.999 -0.991

Compare the correlation between the variables gnp, pop and their corresponding coefficients. What do
you notice?

In data collected over time such as this, successive errors could be correlated. Assuming that the errors
take a simple autoregressive form:

εi � 1 	 ρεi 
 δi

where δi � N � 0 
 τ2 � . We can estimate this correlation ρ by

> cor(g$res[-1],g$res[-16])
[1] 0.31041

Under this assumption Σi j 	 ρ � i � j � . For simplicity, lets assume we know that ρ 	 0 � 31041. We now construct
the Σ matrix and compute the GLS estimate of β along with its standard errors.

> x <- model.matrix(g)
> Sigma <- diag(16)
> Sigma <- 0.31041ˆabs(row(Sigma)-col(Sigma))
> Sigi <- solve(Sigma)
> xtxi <- solve(t(x) %*% Sigi %*% x)
> beta <- xtxi %*% t(x) %*% Sigi %*% longley$Empl
> beta

[,1]
[1,] 94.89889
[2,] 0.06739
[3,] -0.47427
> res <- longley$Empl - x %*% beta
> sig <- sqrt(sum(resˆ2)/g$df)
> sqrt(diag(xtxi))*sig
[1] 14.157603 0.010867 0.155726

Compare with the model output above where the errors are assumed to be uncorrelated.
Another way to get the same result is to regress S � 1y on S � 1x as we demonstrate here:
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> sm <- chol(Sigma)
> smi <- solve(t(sm))
> sx <- smi %*% x
> sy <- smi %*% longley$Empl
> lm(sy ˜ sx-1)$coef
sx(Intercept) sxGNP sxPopulation

94.89889 0.06739 -0.47427

In practice, we would not know that the ρ � 0 � 31 and we’d need to estimate it from the data. Our initial
estimate is 0.31 but once we fit our GLS model we’d need to re-estimate it as

> cor(res[-1],res[-16])
[1] 0.35642

and then recompute the model again with ρ � 0 � 35642 . This process would be iterated until conver-
gence.

The nlme library contains a GLS fitting function. We can use it to fit this model:

> library(nlme)
> g <- gls(Employed ˜ GNP + Population,
correlation=corAR1(form= ˜Year), data=longley)

> summary(g)
Correlation Structure: AR(1)
Formula: ˜Year
Parameter estimate(s):

Phi
0.64417

Coefficients:
Value Std.Error t-value p-value

(Intercept) 101.858 14.1989 7.1736 <.0001
GNP 0.072 0.0106 6.7955 <.0001
Population -0.549 0.1541 -3.5588 0.0035

Residual standard error: 0.68921
Degrees of freedom: 16 total; 13 residual

We see that the estimated value of ρ is 0.64. However, if we check the confidence intervals for this:

> intervals(g)
Approximate 95% confidence intervals

Coefficients:
lower est. upper

(Intercept) 71.183204 101.858133 132.533061
GNP 0.049159 0.072071 0.094983
Population -0.881491 -0.548513 -0.215536
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Correlation structure:
lower est. upper

Phi -0.44335 0.64417 0.96451

Residual standard error:
lower est. upper

0.24772 0.68921 1.91748

we see that it is not significantly different from zero.

5.2 Weighted Least Squares

Sometimes the errors are uncorrelated, but have unequal variance where the form of the inequality is known.
Weighted least squares (WLS) can be used in this situation. When Σ is diagonal, the errors are uncorrelated
but do not necessarily have equal variance. We can write Σ � diag � 1 � w1 ��������� 1 � wn � , where the wi are the
weights so S � diag ��� 1 � w1 ��������� � 1 � wn � . So we can regress � wixi on � wiyi (although the column of ones
in the X-matrix needs to be replaced with � wi. Cases with low variability should get a high weight, high
variability a low weight. Some examples

1. Errors proportional to a predictor: var � εi � ∝ xi suggests wi � x � 1
i

2. Yi are the averages of ni observations then var yi � var εi � σ2 � ni suggests wi � ni.

Here’s an example from an experiment to study the interaction of certain kinds of elementary particles
on collision with proton targets. The experiment was designed to test certain theories about the nature of
the strong interaction. The cross-section(crossx) variable is believed to be linearly related to the inverse
of the energy(energy - has already been inverted). At each level of the momentum, a very large num-
ber of observations were taken so that it was possible to accurately estimate the standard deviation of the
response(sd).

Read in and check the data:

> data(strongx)
> strongx

momentum energy crossx sd
1 4 0.345 367 17
2 6 0.287 311 9
3 8 0.251 295 9
4 10 0.225 268 7
5 12 0.207 253 7
6 15 0.186 239 6
7 20 0.161 220 6
8 30 0.132 213 6
9 75 0.084 193 5

10 150 0.060 192 5

Define the weights and fit the model:

> g <- lm(crossx ˜ energy, strongx, weights=sdˆ-2)
> summary(g)
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.47 8.08 18.4 7.9e-08
energy 530.84 47.55 11.2 3.7e-06

Residual standard error: 1.66 on 8 degrees of freedom
Multiple R-Squared: 0.94, Adjusted R-squared: 0.932
F-statistic: 125 on 1 and 8 degrees of freedom, p-value: 3.71e-06

Try fitting the regression without weights and see what the difference is.

> gu <- lm(crossx ˜ energy, strongx)
> summary(gu)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 135.0 10.1 13.4 9.2e-07
energy 619.7 47.7 13.0 1.2e-06

Residual standard error: 12.7 on 8 degrees of freedom
Multiple R-Squared: 0.955, Adjusted R-squared: 0.949
F-statistic: 169 on 1 and 8 degrees of freedom, p-value: 1.16e-06

The two fits can be compared

> plot(crossx ˜ energy, data=strongx)
> abline(g)
> abline(gu,lty=2)

and are shown in Figure 5.1.
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Figure 5.1: Weighted least square fit shown in solid. Unweighted is dashed.
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The unweighted fit appears to fit the data better overall but remember that for lower values of energy,
the variance in the response is less and so the weighted fit tries to catch these points better than the others.

5.3 Iteratively Reweighted Least Squares

In cases, where the form of the variance of ε is not completely known, we may model Σ using a small
number of parameters. For example,

var εi  γ0 ! γ1x1

might seem reasonable in a given situation. The IRWLS fitting Algorithm is

1. Start with wi  1

2. Use least squares to estimate β.

3. Use the residuals to estimate γ, perhaps by regressing ε̂2 on x.

4. Recompute the weights and goto 2.

Continue until convergence. There are some concerns about this — how is subsequent inference about
β affected? Also how many degrees of freedom do we have? More details may be found in Carroll and
Ruppert (1988).

An alternative approach is to model the variance and jointly estimate the regression and weighting
parameters using likelihood based method. This can be implemented in R using the gls() function in
the nlme library.


