
Chapter 9

Scale Changes, Principal Components and
Collinearity

9.1 Changes of Scale

Suppose we re-express xi as xi
� a
b . We might want to do this because

1. Predictors of similar magnitude are easier to compare. β̂ � 3 � 51 is easier to parse than β̂ � 0 � 000000351.

2. A change of units might aid interpretability.

3. Numerical stability is enhanced when all the predictors are on a similar scale.

Rescaling xi leaves the t and F tests and σ̂2 and R2 unchanged and β̂i
� bβ̂i.

Rescaling y in the same way leaves the t and F tests and R2 unchanged but σ̂ and β̂ will rescaled by b.
To demonstrate this, we use same old model:

> g <- lm(sr ˜ pop15+pop75+dpi+ddpi,savings)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.566087 7.354516 3.88 0.00033
pop15 -0.461193 0.144642 -3.19 0.00260
pop75 -1.691498 1.083599 -1.56 0.12553
dpi -0.000337 0.000931 -0.36 0.71917
ddpi 0.409695 0.196197 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

The coefficient for income is rather small - let’s measure income in thousands of dollars instead and
refit:

> g <- lm(sr ˜ pop15+pop75+I(dpi/1000)+ddpi,savings)
> summary(g)
Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.566 7.355 3.88 0.00033
pop15 -0.461 0.145 -3.19 0.00260
pop75 -1.691 1.084 -1.56 0.12553
I(dpi/1000) -0.337 0.931 -0.36 0.71917
ddpi 0.410 0.196 2.09 0.04247

Residual standard error: 3.8 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

What changed and what stayed the same?
One rather thorough approach to scaling is to convert all the variables to standard units (mean 0 and

variance 1) using the scale() command:

> scsav <- data.frame(scale(savings))
> g <- lm(sr ˜ ., scsav)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0e-16 0.1200 3.3e-15 1.0000
pop15 -0.9420 0.2954 -3.19 0.0026
pop75 -0.4873 0.3122 -1.56 0.1255
dpi -0.0745 0.2059 -0.36 0.7192
ddpi 0.2624 0.1257 2.09 0.0425

Residual standard error: 0.849 on 45 degrees of freedom
Multiple R-Squared: 0.338, Adjusted R-squared: 0.28
F-statistic: 5.76 on 4 and 45 degrees of freedom, p-value: 0.00079

As may be seen, the intercept is zero. This is because the regression plane always runs through the
point of the averages which because of the centering is now at the origin. Such scaling has the advantage
of putting all the predictors and the response on a comparable scale, which makes comparisons simpler. It
also allows the coefficients to be viewed as kind of partial correlation — the values will always be between
-1 and 1. It also avoids some numerical problems that can arise when variables are of very different scales.
The downside of this scaling is that the regression coefficients now represent the effect of a one standard
unit increase in the predictor on the response in standard units — this might not always be easy to interpret.

9.2 Principal Components

Recall that if the X matrix is orthogonal then testing and interpretation are greatly simplified. One purpose
for principal components is to transform the X to orthogonality. For example, consider the case with two
predictors depicted in Figure 9.1.

The original predictors, x1 and x2, are clearly correlated and so the X -matrix will not be orthogonal.
This will complicate the interpretation of the effects of x1 and x2 on the response. Suppose we rotate the
coordinate axes so that in the new system, the predictors are orthogonal. Furthermore, suppose we make
the rotation so that the first axis lies in the direction of the greatest variation in the data, the second in the
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Figure 9.1: Original predictors are x1 and x2, principal components are z1 and z2

second greatest direction of variation in those dimensions remaining and so on. These rotated directions, z1
and z2 in our two predictor example, are simply linear combinations of the original predictors. This is the
geometrical description of principal components. We now indicate how these directions may be calculated.

We wish to find a rotation p � p matrix U such that

Z � XU

and ZT Z � diag
�
λ1 �	�	�	�
� λp � and λ1 � λ2 ��	�	��� λp � 0. Zero eigenvalues indicate non-identifiability. Since

ZT Z � UT XT XU

the eigenvalues of X T X are λ1 �	�	�	�
� λp and the eigenvectors of X T X are the columns of U . The columns of Z
are called the principal components and these are orthogonal to each other. λ i is the variance of Zi.

Another way of looking at it is to try to find the linear combinations of X which have the maximum
variation. We find the u1 such that var

�
uT

1 X � is maximized subject to uT
1 u1 � 1. Now find u2 such that

var
�
uT

2 X � is maximized subject to uT
1 u2 � 0 and uT

2 u2 � 1. We keep finding directions of greatest variation
orthogonal to those directions we have already found.

Ideally, only a few eigenvalues will be large so that almost all the variation in X will be representable by
those first few principal components.

Principal components can be effective in some situations but

1. The principal components are linear combinations of the predictors — little is gained if these are
not interpretable. Generally the predictors have to be measurements of comparable quantities for
interpretation to be possible

2. Principal components does not use the response. It’s possible that a lesser principal component is
actually very important in predicting the response.

3. There are variations which involve not using the intercept in X T X or using the correlation matrix of
the predictors instead of X T X .
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We use the Longley data for this example: First we compute the eigendecomposition for X T X :

> data(longley)
> x <- as.matrix(longley[,-7])
> e <- eigen(t(x) %*% x)

Look at the eigenvalues:

> e$values
[1] 6.6653e+07 2.0907e+05 1.0536e+05 1.8040e+04 2.4557e+01 2.0151e+00

Look at the relative size - the first is big. Consider the first eigenvector (column) below:

> dimnames(e$vectors)[[2]] <- paste("EV",1:6)
> round(e$vec,3)

EV 1 EV 2 EV 3 EV 4 EV 5 EV 6
GNP def 0.050 -0.070 -0.034 0.043 -0.957 -0.273
GNP 0.191 -0.725 -0.343 0.554 0.075 0.087
Unem 0.157 -0.622 0.564 -0.521 0.007 0.011
Armed 0.128 -0.104 -0.746 -0.645 0.012 0.000
Popn 0.058 -0.038 -0.011 0.036 0.281 -0.956
Year 0.957 0.266 0.078 0.057 0.015 0.053

The first eigenvector is dominated by year. Now examining the X-matrix. What are the scales of the
variables?

> x
GNP deflator GNP Unemployed Armed Forces Population Year

1947 83.0 234.289 235.6 159.0 107.608 1947
1948 88.5 259.426 232.5 145.6 108.632 1948
1949 88.2 258.054 368.2 161.6 109.773 1949
1950 89.5 284.599 335.1 165.0 110.929 1950
1951 96.2 328.975 209.9 309.9 112.075 1951
1952 98.1 346.999 193.2 359.4 113.270 1952
1953 99.0 365.385 187.0 354.7 115.094 1953
1954 100.0 363.112 357.8 335.0 116.219 1954
1955 101.2 397.469 290.4 304.8 117.388 1955
1956 104.6 419.180 282.2 285.7 118.734 1956
1957 108.4 442.769 293.6 279.8 120.445 1957
1958 110.8 444.546 468.1 263.7 121.950 1958
1959 112.6 482.704 381.3 255.2 123.366 1959
1960 114.2 502.601 393.1 251.4 125.368 1960
1961 115.7 518.173 480.6 257.2 127.852 1961
1962 116.9 554.894 400.7 282.7 130.081 1962

We see that the variables have different scales. It might make more sense to standardize the predictors before
trying principal components. This is equivalent to doing principal components on the correlation matrix:
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> e <- eigen(cor(x))
> e$values
[1] 4.60337710 1.17534050 0.20342537 0.01492826 0.00255207 0.00037671
> dimnames(e$vectors) <- list(c("GNP def","GNP","Unem","Armed","Popn",
"Year"),paste("EV",1:6))

> round(e$vec,3)
EV 1 EV 2 EV 3 EV 4 EV 5 EV 6

GNP def 0.462 0.058 -0.149 0.793 0.338 0.135
GNP 0.462 0.053 -0.278 -0.122 -0.150 -0.818
Unem 0.321 -0.596 0.728 0.008 0.009 -0.107
Armed 0.202 0.798 0.562 -0.077 0.024 -0.018
Popn 0.462 -0.046 -0.196 -0.590 0.549 0.312
Year 0.465 0.001 -0.128 -0.052 -0.750 0.450

One commonly used method of judging how many principal components are worth considering is the
scree plot — see Figure 9.2, which is produced by

> plot(e$values,type="l",xlab="EV no.")
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Figure 9.2: Scree plot for the principal components on the correlation of longley predictors

Often, these plots have a noticeable “elbow” — the point at which further eigenvalues are negligible in
size compared to the earlier ones. Here the elbow is at 3 telling us that we need only consider 2 principal
components.

One advantage of principal components is that it transforms the predictors to an orthogonal basis. To
figure out the orthogonalized predictors for this data based on the eigendecomposition for the correlation
matrix we must first standardize the data: The functions scale() does this:

> nx <- scale(x)

We can now create the orthogonalized predictors — the Z � XU operation in our description above.
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> enx <- nx %*% e$vec

and fit:

> g <- lm(longley$Emp ˜ enx)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 65.3170 0.0762 857.03 < 2e-16
enxEV 1 1.5651 0.0367 42.66 1.1e-11
enxEV 2 0.3918 0.0726 5.40 0.00043
enxEV 3 -1.8604 0.1745 -10.66 2.1e-06
enxEV 4 0.3573 0.6442 0.55 0.59267
enxEV 5 -6.1698 1.5581 -3.96 0.00331
enxEV 6 6.9634 4.0555 1.72 0.12011

Residual standard error: 0.305 on 9 degrees of freedom
Multiple R-Squared: 0.995, Adjusted R-squared: 0.992
F-statistic: 330 on 6 and 9 degrees of freedom, p-value: 4.98e-10

Notice that the p-values of the 4th and 6th eigenvectors are not significant while the the 5th is. Because
the directions of the eigenvectors are set successively in the greatest remaining direction of variation in the
predictors, it is natural that they be ordered in significance in predicting the response. However, there is no
guarantee of this — we see here that the 5th eigenvectors is significant while the fourth is not even though
there is about six times greater variation in the fourth direction than the fifth. In this example, it hardly
matters since most of the variation is explained by the earlier values, but look out for this effect in other
dataset in the first few eigenvalues.

We can take a look at the � X T X �
� 1 matrix:

> round(summary(g)$cov.unscaled,2)
(Intercept) enxEV 1 enxEV 2 enxEV 3 enxEV 4 enxEV 5 enxEV 6

(Intercept) 0.06 0.00 0.00 0.00 0.00 0.00 0.00
enxEV 1 0.00 0.01 0.00 0.00 0.00 0.00 0.00
enxEV 2 0.00 0.00 0.06 0.00 0.00 0.00 0.00
enxEV 3 0.00 0.00 0.00 0.33 0.00 0.00 0.00
enxEV 4 0.00 0.00 0.00 0.00 4.47 0.00 0.00
enxEV 5 0.00 0.00 0.00 0.00 0.00 26.12 0.00
enxEV 6 0.00 0.00 0.00 0.00 0.00 0.00 176.97

Principal components are really only useful if we can interpret the meaning of the new linear combi-
nations. Look back at the first eigenvector - this is roughly a linear combination of all the (standardized
variables). Now plot each of the variables as they change over time — see Figure 9.2.

> par(mfrow=c(3,2))
> for(i in 1:6) plot(longley[,6],longley[,i],xlab="Year",
ylab=names(longley)[i])

What do you notice? This suggests we identify the first principal component with a time trend effect.
The second principal component is roughly a contrast between numbers unemployed and in the armed
forces. Let’s try fitting a regression with those two components:
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Figure 9.3: The Longley data
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> summary(lm(Employed ˜ Year + I(Unemployed-Armed.Forces),longley))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.39e+03 7.89e+01 -17.6 1.8e-10
Year 7.45e-01 4.04e-02 18.5 1.0e-10
I(Unemployed - Armed.Forces) -4.12e-03 1.53e-03 -2.7 0.018

Residual standard error: 0.718 on 13 degrees of freedom
Multiple R-Squared: 0.964, Adjusted R-squared: 0.958
F-statistic: 173 on 2 and 13 degrees of freedom, p-value: 4.29e-10

This approaches the fit of the full model and is easily interpretable. We could do more work on the other
principal components.

This is illustrates a typical use of principal components for regression. Some intuition is required to form
new variables as combinations of older ones. If it works, a simplified and interpretable model is obtained,
but it doesn’t always work out that way.

9.3 Partial Least Squares

Partial Least Squares is a method for relating a set of input variables X1 �	�	�	��� Xm and outputs Y1 �	�	�	��� Yl . PLS
has some relationship to principal component regression (PCR). PCR regresses the response on the principal
components of X while PLS finds the best orthogonal linear combinations of X for predicting Y.

We will consider only univariate PLS — that is to say l � 1 so that Y is scalar. This is the typical multiple
regression setting. We will attempt to find models of the form

ŷ � β1T1 ���	�	��� βpTp

where Tk is a linear combination of the X ’s. See Figure 9.4
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Figure 9.4: Schematic representation of Partial Least Squares
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We’ll assume that all variables have been centered to have mean 0 — this means that our intercept terms
will always be zero. Here is the algorithm for determining the T ’s.

1. Regress Y on each Xi in turn to get b1i.

2. Form

T1 � m

∑
i � 1

w1ib1iX1i

where the weights w1i sum to one.

3. Regress Y on T1 and each Xi on T1. The residuals from these regressions have the effect of T1 removed.
Replace Y and each Xi by the residuals of each corresponding regression.

4. Go back to step one updating the index.

There are various choices for the weighting scheme:

1. Set wi j � 1 � m giving each predictor equal weight.

2. Set wi j ∝ varX j. This is the most common choice. The variances of the bi j are then inversely propor-
tional to varX j which does make some sense.

The algorithm ensures that the components Ti are uncorrelated just as the principal components are
uncorrelated. This means that β̂i will not change as more components are added to or subtracted from the
model.

For this example, we again use the Longley data. We will not need intercept terms in any of the regres-
sions because of the centering.

> x <- as.matrix(longley[,-7])
> y <- longley$Emp
> cx <- sweep(x,2,apply(x,2,mean))
> cy <- y -mean(y)

Now do the PCR using a more direct method than we used above:

> library(mva)
> ex <- princomp(cx)
> g <- lm(cy ˜ ex$scores -1)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
ex$scoresComp.1 0.025095 0.000603 41.65 1.5e-12
ex$scoresComp.2 0.014038 0.000888 15.82 2.1e-08
ex$scoresComp.3 0.029991 0.002152 13.94 7.1e-08
ex$scoresComp.4 -0.061765 0.058332 -1.06 0.3146
ex$scoresComp.5 -0.489877 0.200645 -2.44 0.0348
ex$scoresComp.6 1.762076 0.443363 3.97 0.0026

Residual standard error: 0.289 on 10 degrees of freedom
Multiple R-Squared: 0.995, Adjusted R-squared: 0.993
F-statistic: 367 on 6 and 10 degrees of freedom, p-value: 3.94e-11
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Are the principal component scores ordered in terms of their importance in predicting the response?
Now for later comparison, we have the regression on just first PC.

> g <- lm(cy ˜ ex$scores[,1] -1)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
ex$scores[, 1] 0.0251 0.0034 7.38 2.3e-06

Residual standard error: 1.63 on 15 degrees of freedom
Multiple R-Squared: 0.784, Adjusted R-squared: 0.77
F-statistic: 54.5 on 1 and 15 degrees of freedom, p-value: 2.28e-06

Now we compute the first component of the partial least squares regression:

> b1 <- numeric(6)
> for(i in 1:6){
+ b1[i] <- crossprod(cx[,i],cy)/crossprod(cx[,i],cx[,i])
+ }
> b1
[1] 0.315966 0.034752 0.018885 0.023078 0.484878 0.716512
> ncx <- sweep(cx,2,b1,"*")
> t1 <- apply(ncx,1,mean)

Here we have a chosen an equal weighting for the variables. Now see how well this component predicts
the response:

> gpls1 <- lm(cy ˜ t1 -1)
> summary(gpls1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
t1 1.3108 0.0959 13.7 7.1e-10

Residual standard error: 0.957 on 15 degrees of freedom
Multiple R-Squared: 0.926, Adjusted R-squared: 0.921
F-statistic: 187 on 1 and 15 degrees of freedom, p-value: 7.11e-10

Compare this to the result above for one principal component.
An alternative weighting scheme assigns the weights proportional to the variances of the variables:

> varx <- apply(cx,2,var)
> vncx <- sweep(ncx,2,varx,"*")
> t1a <- apply(vncx,1,sum)/sum(varx)
> gpls1a <- lm(cy ˜ t1a -1)
> summary(gpls1a)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
t1a 1.605 0.154 10.4 2.8e-08
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Residual standard error: 1.22 on 15 degrees of freedom
Multiple R-Squared: 0.879, Adjusted R-squared: 0.871
F-statistic: 109 on 1 and 15 degrees of freedom, p-value: 2.81e-08

Compare this to the other output. Now we compute the second component of the PLS. We need to
regress out the effect of the first component and then use the same computational method as above.

> cx2 <- matrix(0,16,6)
> for(i in 1:6){
+ cx2[,i] <- lm(cx[,i] ˜ t1-1)$res
+ }
> cy2 <- lm(cy ˜ t1 -1)$res
> b2 <- numeric(6)
> for(i in 1:6){
+ b2[i] <- crossprod(cx2[,i],cy2)/crossprod(cx2[,i],cx2[,i])
+ }
> ncx2 <- sweep(cx2,2,b2,"*")
> t2 <- apply(ncx2,1,mean)

Notice the correlation of the components:

> cor(t1,t2)
[1] 9.0843e-19

Now add t2 to the regression:

> gpls2 <- lm(cy ˜ t1+t2 -1)
> summary(gpls2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
t1 1.3108 0.0749 17.49 6.5e-11
t2 10.9309 3.3658 3.25 0.0058

Residual standard error: 0.748 on 14 degrees of freedom
Multiple R-Squared: 0.958, Adjusted R-squared: 0.952
F-statistic: 158 on 2 and 14 degrees of freedom, p-value: 2.44e-10

Compare the coefficient of t1 with that above. Now compare this fit to the two component PCR.

> g <- lm(cy ˜ ex$scores[,1:2] -1)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
ex$scores[, 1:2]Comp.1 0.02510 0.00243 10.34 6.2e-08
ex$scores[, 1:2]Comp.2 0.01404 0.00358 3.93 0.0015

Residual standard error: 1.16 on 14 degrees of freedom
Multiple R-Squared: 0.897, Adjusted R-squared: 0.883
F-statistic: 61.2 on 2 and 14 degrees of freedom, p-value: 1.2e-07
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Which one is superior in explaining y?
Notes:� The tricky part is choosing how many components are required. Crossvalidation is a possible way of

selecting the number of components.� There are other faster versions of the algorithm described above but these generally provide less
insight into the method.� PLS has been criticized as an algorithm that solves no well-defined modeling problem.� PLS has the biggest advantage over ordinary least squares and PCR when there are large numbers of
variables relative to the number of case. It does not even require that n � p.

PCR and PLS compared
PCR attempts to find linear combinations of the predictors that explain most of the variation in these

predictors using just a few components. The purpose is dimension reduction. Because the principal compo-
nents can be linear combinations of all the predictors, the number of variables used is not always reduced.
Because the principal components are selected using only the X-matrix and not the response, there is no
definite guarantee that the PCR will predict the response particularly well although this often happens. If
it happens that we can interpret the principal components in a meaningful way, we may achieve a much
simpler explanation of the response. Thus PCR is geared more towards explanation than prediction.

In contrast, PLS finds linear combinations of the predictors that best explain the response. It is most
effective when ther are large numbers of variables to be considered. If successful, the variablity of prediction
is substantially reduced. On the other hand, PLS is virtually useless for explanation purposes.

9.4 Collinearity

If XT X is singular, i.e. some predictors are linear combinations of others, we have (exact) collinearity and
there is no unique least squares estimate of β. If X T X is close to singular, we have (approximate) collinearity
or multicollinearity (some just call it collinearity). This causes serious problems with the estimation of β
and associated quantities as well as the interpretation. Collinearity can be detected in several ways:

1. Examination of the correlation matrix of the predictors will reveal large pairwise collinearities.

2. A regression of xi on all other predictors gives R2
i . Repeat for all predictors. R2

i close to one indicates
a problem — the offending linear combination may be found.

3. Examine the eigenvalues of X T X - small eigenvalues indicate a problem. The condition number is
defined as

κ  λ1

λp

where κ � 30 is considered large. κ is called the condition number. Other condition numbers, ! λ1 " λi
are also worth considering because they indicate whether more than just one independent linear com-
bination is to blame.

Collinearity makes some of the parameters hard to estimate. Define

Sx jx j  ∑
i

#
xi j $ x̄ j % 2
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then

var β̂ j & σ2 ' 1
1 ( R2

j ) 1
Sx jx j

We can see that if x j doesn’t vary much then the variance of β̂ j will be large. As an aside, the variance of
the first principal component is maximized and so the variance of the corresponding regression coefficient
will tend to be small. Another consequence of this equation is that it tells us what designs will minimize
the variance of the regression coefficients if we have the ability to place the X . Orthogonality means that
R2

j & 0 which minimizes the variance. Also we can maximize Sx jx j by spreading X as much as possible. The
maximum is attained by placing half the points at the minimum practical value and half at the maximum.
Unfortunately, this design assumes the linearity of the effect and would make it impossible to check for any
curvature. So, in practice, most would put some design points in the middle of the range to allow checking
of the fit.

If R2
j is close to one then the variance inflation factor 1

1 * R2
j

will be large. For orthogonal designs and

principal components, R2
j & 0, so in these case, we see that the regression coefficient estimation suffers no

additional penalty in terms of precision.
Collinearity leads to

1. imprecise estimates of β — the signs of the coefficients may be misleading.

2. t-tests which fail to reveal significant factors

3. missing importance of predictors

The Longley dataset is a good example of collinearity:

> g <- lm(Employed ˜ ., longley)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.48e+03 8.90e+02 -3.91 0.00356
GNP.deflator 1.51e-02 8.49e-02 0.18 0.86314
GNP -3.58e-02 3.35e-02 -1.07 0.31268
Unemployed -2.02e-02 4.88e-03 -4.14 0.00254
Armed.Forces -1.03e-02 2.14e-03 -4.82 0.00094
Population -5.11e-02 2.26e-01 -0.23 0.82621
Year 1.83e+00 4.55e-01 4.02 0.00304

Residual standard error: 0.305 on 9 degrees of freedom
Multiple R-Squared: 0.995, Adjusted R-squared: 0.992
F-statistic: 330 on 6 and 9 degrees of freedom, p-value: 4.98e-10

Recall that the response is number employed. Three of the predictors have large p-values but all are
variables that might be expected to affect the response. Why aren’t they significant? Check the correlation
matrix first (rounding to 3 digits for convenience)

> round(cor(longley[,-7]),3)
GNP deflator GNP Unemployed Armed Forces Population Year

GNP deflator 1.000 0.992 0.621 0.465 0.979 0.991
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GNP 0.992 1.000 0.604 0.446 0.991 0.995
Unemployed 0.621 0.604 1.000 -0.177 0.687 0.668

Armed Forces 0.465 0.446 -0.177 1.000 0.364 0.417
Population 0.979 0.991 0.687 0.364 1.000 0.994

Year 0.991 0.995 0.668 0.417 0.994 1.000

There are several large pairwise correlations. Now we check the eigendecomposition:

> x <- as.matrix(longley[,-7])
> e <- eigen(t(x) %*% x)
> e$val
[1] 6.6653e+07 2.0907e+05 1.0536e+05 1.8040e+04 2.4557e+01 2.0151e+00
> sqrt(e$val[1]/e$val)
[1] 1.000 17.855 25.153 60.785 1647.478 5751.216

There is a wide range in the eigenvalues and several condition numbers are large. This means that
problems are being caused by more than just one linear combination. Now check out the variance inflation
factors. For the first variable this is

> summary(lm(x[,1] ˜ x[,-1]))$r.squared
[1] 0.99262
> 1/(1-0.99262)
[1] 135.5

which is large - the VIF for orthogonal predictors is 1. Now we compute all the VIF’s in one go:

> vif(x)
[1] 135.5324 1788.5135 33.6189 3.5889 399.1510 758.9806

There’s definitely a lot of variance inflation! For example, we can interpret + , 1788 -/. 42 as telling us
that the standard error for GNP is 42 times larger than it would have been without collinearity. How can
we get rid of this problem? One way is to throw out some of the variables. Examine the full correlation
matrix above. Notice that variables 3 and 4 do not have extremely large pairwise correlations with the other
variables so we should keep them and focus on the others for candidates for removal:

> cor(x[,-c(3,4)])
GNP.deflator GNP Population Year

GNP.deflator 1.00000 0.99159 0.97916 0.99115
GNP 0.99159 1.00000 0.99109 0.99527
Population 0.97916 0.99109 1.00000 0.99395
Year 0.99115 0.99527 0.99395 1.00000

These four variables are strongly correlated with each other - any one of them could do the job of
representing the other. We pick year arbitrarily:

> summary(lm(Employed ˜ Armed.Forces + Unemployed + Year,longley))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.80e+03 6.86e+01 -26.18 5.9e-12
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Armed.Forces -7.72e-03 1.84e-03 -4.20 0.0012
Unemployed -1.47e-02 1.67e-03 -8.79 1.4e-06
Year 9.56e-01 3.55e-02 26.92 4.2e-12

Residual standard error: 0.332 on 12 degrees of freedom
Multiple R-Squared: 0.993, Adjusted R-squared: 0.991
F-statistic: 555 on 3 and 12 degrees of freedom, p-value: 3.92e-13

Comparing this with the original fit, we see that the fit is very similar but only three rather than six
predictors are used.

One final point - extreme collinearity can cause problems in computing the estimates - look what happens
when we use the direct formula for β̂.

> x <- as.matrix(cbind(1,longley[,-7]))
> solve(t(x) %*% x) %*% t(x) %*% longley[,7]
Error: singular matrix ‘a’ in solve

R , like most statistical packages, uses a more numerically stable method for computing the estimates in
lm(). Something more like this:

> solve(t(x) %*% x , t(x) %*% longley$Emp, tol = 1e-12)
[,1]

[1,] -3.4822e+03
[2,] 1.5061e-02
[3,] -3.5818e-02
[4,] -2.0202e-02
[5,] -1.0332e-02
[6,] -5.1110e-02
[7,] 1.8291e+00

Collinearity can be interpreted geometrically. Imagine a table — as two diagonally opposite legs are
moved closer together, the table becomes increasing unstable.

The effect of collinearity on prediction depends on where the prediction is to be made. The greater the
distance from the observed data, the more unstable the prediction. Distance needs to be considered in a
Mahalanobis sense rather than Euclidean.

One cure for collinearity is amputation — too many variables are trying to do the same job of explaining
the response. When several variables which are highly correlated are each associated with the response, we
have to take care that we don’t conclude that the variables we drop have nothing to do with the response.

9.5 Ridge Regression

Ridge regression makes the assumption that the regression coefficients (after normalization) are not likely
to be very large. It is appropriate for use when the design matrix is collinear and the usual least squares
estimates of β appear to be unstable.

Suppose that the predictors have been centered by their means and scaled by their standard deviations
and that the response has been centered. The ridge regression estimates of β are then given by

β̂ 021 XT X 3 λI 4
5 1XT y



9.5. RIDGE REGRESSION 121

The ridge constant λ is usually selected from the range 6 0 7 1 8 .
The use of ridge regression can be motivated in two ways. Suppose we take a Bayesian point of view and

put a prior (multivariate normal) distribution on β that expresses the belief that smaller values of β are more
likely than larger ones. Large values of λ correspond to a belief that the β are really quite small whereas
smaller values of λ correspond to a more relaxed belief about β. This is illustrated in Figure 9.5.
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Figure 9.5: Ridge regression illustrated. The least squares estimate is at the center of the ellipse while the
ridge regression is the point on the ellipse closest to the origin. The ellipse is a contour of equal density of
the posterior probability, which in this case will be comparable to a confidence ellipse. λ controls the size
of the ellipse - the larger λ is, the larger the ellipse will be

Another way of looking at is to suppose we place to some upper bound on βT β and then compute the
least squares estimate of β subject to this restriction. Use of Lagrange multipliers leads to ridge regression.
The choice of λ corresponds to the choice of upper bound in this formulation.

λ may be chosen by automatic methods but it is probably safest to plot the values of β̂ as a function of
λ. You should pick the smallest value of λ that produces stable estimates of β.

We demonstrate the method on the Longley data. λ 9 0 corresponds to least squares while we see that
as λ : ∞, β̂ : 0.

> library(MASS)
> gr <- lm.ridge(Employed ˜ .,longley,lambda = seq(0,0.1,0.001))
> matplot(gr$lambda,t(gr$coef),type="l",xlab=expression(lambda),

ylab=expression(hat(beta)))
> abline(h=0,lwd=2)
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Figure 9.6: Ridge trace plot for the Longley data. The vertical line is the Hoerl-Kennard choice of λ. The
topmost curve represent the coefficient for year. The dashed line that starts well below zero but ends above
is for GNP.

The ridge trace plot is shown in Figure 9.5.
Various automatic selections for λ are available

> select(gr)
modified HKB estimator is 0.0042754
modified L-W estimator is 0.032295
smallest value of GCV at 0.003
> abline(v=0.00428)

The Hoerl-Kennard (the originators of ridge regression) choice of λ has been shown on the plot but I
would prefer a larger value of 0.03. For this choice of λ, the β̂’s are

> gr$coef[,gr$lam == 0.03]
GNP.deflator GNP Unemployed Armed.Forces Population Year

0.22005 0.76936 -1.18941 -0.52234 -0.68618 4.00643

in contrast to the least squares estimates of

> gr$coef[,1]
GNP.deflator GNP Unemployed Armed.Forces Population Year

0.15738 -3.44719 -1.82789 -0.69621 -0.34420 8.43197

Note that these values are based on centered and scaled predictors which explains the difference from
previous fits. Consider the change in the coefficient for GNP. For the least squares fit, the effect of GNP is
negative on the response - number of people employed. This is counter-intuitive since we’d expect the effect
to be positive. The ridge estimate is positive which is more in line with what we’d expect.
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Ridge regression estimates of coefficients are biased. Bias is undesirable but there are other considera-
tions. The mean squared error can be decomposed in the following way:

E ; β̂ < β = 2 > ; E ; β̂ < β =	= 2 ? E ; β̂ < Eβ̂ = 2
Thus the mean-squared error of an estimate can be represented as the square of the bias plus the variance.
Sometimes a large reduction in the variance may obtained at the price of an increase in the bias. If the MSE
is reduced as a consequence then we may be willing to accept some bias. This is the trade-off that Ridge
Regression makes - a reduction in variance at the price of an increase in bias. This is a common dilemma.


